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EXECUTIVE SUMMARY 
This deliverable presents a comparison of neuromorphic computation solutions, with respect to performance 
on standard tasks, speed, energy consumption and footprint. It has been completed with the contribution of 
all POST-DIGITAL ESRs under the lead of  Professor Serge Massar from Université Libre de Bruxelles.  
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1 INTRODUCTION 

 

We compare different neuromorphic computation solutions with respect to the type of algorithm 
implemented, the number of nodes (or “neurons”), the performance on some standard tasks, speed, 
estimates of energy consumption, and footprint. 

Given the very wide variety and number of systems reported in the literature, we have focused on systems 
developed or used by members of POST-DIGITAL (with one exception: we have included data on a related 
system published by another group, see system 3). We report on 9 systems. A table summarizing the 
comparison can be found below, followed by detailed information about each system. 

2 COMPARISON OF PERFORMANCE OF DIFFERENT NEUROMORPHIC SYSTEMS 

Concerning the type of algorithms implemented, systems 1 to 5 implement the reservoir computing algorithm 
(system 4 is a preliminary numerical study of a system that is not yet implemented); 6 is an extreme learning 
machine; 7 is an accelerator for vector-matrix multiplication; 8 an event based camera supplemented by offline 
processing using a spiking neural network (Loihi); and 9 concerns the software development of a novel training 
algorithm. 

Concerning the number of nodes or “neurons”, the POST-DIGITAL systems range from a dozen to 103. 

Concerning tasks, each kind of algorithm addresses the processing of different kinds of information. Therefore, 
the tasks on which different algorithms are tested are different. If we focus on the 5 systems implementing 
reservoir computing, then the same task has been tackled by different systems, and performance can be 
compared. Note however that some results are reported in terms of Normalised Means Square Error (NMSE) 
and some results are reported in terms of Normalised Root Means Square Error (NRMSE)). Because of the 
diversity of results reported, we do not present these results in the table and refer to the detailed description. 

Concerning speed, the fastest implemented systems are 1 and 3 which are reservoir computers that can process 
one input every 300 ps, and the vector matrix multiplication accelerator that takes approximately 1 ns to 
process an input. The slowest system is 6 which processes one input every 0,5 s (due to the very slow refresh 
rate of the spectral filter used in the experiment).  

Concerning energy consumption, a wide variety of results are reported. Many of the systems described are 
optical, and one needs to separate the energy consumption of the purely optical systems from the energy 
consumption of the drivers and current sources, and of the supporting electronics. Because these are proof of 
principle demonstrators, no real effort has been put in minimizing the overall energy consumption.  

Finally concerning footprint, a big difference can be made between systems using integrated optics in which 
case the footprint of the optical system is on the order of 1 cm2, and tabletop experiments in which case the 
footprint is a fraction of a m2. Supporting electronics have not been packaged, and at present have a footprint 
of order m2. 

The present report is quite preliminary. In particular, it does not go into the potentialities of each system if it 
were optimized. It would thus be interesting for each system to reflect on the ultimate limits in terms of speed; 
of energy consumption (how much can the energy of the drivers and supporting electronics be reduced; do we 
need an ADC and a DAC, or can the signals remain in the analogue domain); of footprint (including all supporting 
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electronics). Future analysis could focus on the potential of each system in terms of speed, footprint, energy 
consumption, etc… if the system were optimized further. 

 

 

Table 1 Comparison of performance of 9 different neuromorphic systems. See detailed information in the main text. 

 System Algorithm # neurons Input 
processing 
time 

Energy 
consumption 

Footprint 

1 High speed Opto-
Electronic Delay 
System 

Reservoir 
Computing 

30-2000 0.3-20 ns 1W + 
electronics 

- 

2 Opto-Electronic 
Delay System + 
FPGA 

Reservoir 
Computing 

50-600 2-200 µs 0,14W 
(optical)+ 12W 
(electronics) 

30*100 cm2 

3 Integrated Opto-
Electronic with 
feedback laser 

Reservoir 
Computing 

0-250 254 ps - +- 1 cm2 (for 
chip) 

4 Evanescent 
coupling between 
resonators 
(numerical 
simulation) 

Reservoir 
Computing 

12-48 40 ps - < 1 cm2 (for 
chip) 

5 Optoelectronic 
using Wavelength 
Multiplexing (RC) 

Reservoir 
Computing 

20-40 5ns 1200W 60*80 cm2 

6 Optoelectronic 
using Wavelength 
Multiplexing 
(ELM) 

Extreme 
Learning 
Machine 

20-60 0.5 s 1600W 100*50 cm2 

7 Vector Matrix 
Multiplication 
using integrated 
photonics 

Vector Matrix 
Multiplication 

1000*1000 1 ns 20W 1.6*1.6 cm2 

8 Optoelectronic 
event-based 
neuromorphic 
system + offline 
spiking neurons 
 

Feed-forward 
neural network 

500-1000 1-100 µs - 50*10 cm2 

9 conceptor-based 
regularization on 
desktop computer 

Backpropagation 
through time 
using 
Conceptor-
based 
regularization  

512 (total training 
time 4 min) 

35 W (during 
training) 

- 
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2.1 HIGH SPEED OPTOELECTRONIC DELAY DYNAMICAL SYSTEM 
 

Algorithm: reservoir computing 

Output layer: digital 

Number of nodes: 32 - 2094 time-multiplexed neurons 

Performance on standard task 

Mackey-Glass 9-step-ahead prediction: NRMSE=0.01 

Santa-Fe one step ahead prediction: NRMSE=0.06 

Fiber transmission equalization: BER<0.001 

Speed 

time per node: 11.7 ps 

input processing speed: up to 2.67 GHz 

Estimated energy consumption: 1.07W (includes laser operation, optical encoding and photodetection / does 

not include digital post-processing)  

Footprint: table top system 

 

Reference 

Goldmann, M., Estebanez, I., Vlieg, E. A., Mirasso, C. R., Fischer, I., Argyris, A., & Soriano, M. C. (2023, June). 

Speeding up a time-delay photonic reservoir. In The European Conference on Lasers and Electro-Optics (p. 

jsiii_2_2). Optica Publishing Group. 

 

2.2 OPTOELECTRONIC DELAY DYNAMICAL SYSTEM WITH FPGA 
  

Algorithm: Reservoir Computing 

Digital interface: FPGA 

Number of “neurons” : 50 to 600 

 Performance on standard task 

NARMA10: NMSE=0.45 (with 50 Neurons) 

10 step ahead Mackey Glass prediction: NMSE=0.15 (with 50 Neurons)  

Nonlinear channel equalization (noiseless): SER=0 (with 50 neurons) 

Spoken Digits Recognition: WER=0.13 (with 100 neurons)  

KTH Human Action Recognition Dataset: Accuracy = 90.87% (with 600 Neurons)  

Speed 

Time to process one neuron: 39 ns to 156 ns 

Time to process one input: number of neurons * time to process one neuron. From 2 ms to 187ms. 

 Energy consumption 

Energy consumption of photonic devices: 0.14 W 

Energy consumption of supporting electronics, including FPGA board and ADC+DAC board: 12W. 
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 Footprint 

approx. 30cm*100cm 

  

References 

[1] Picco, Enrico, and Serge Massar. "Real-Time Photonic Deep Reservoir Computing for Speech 

Recognition." 2023 International Joint Conference on Neural Networks (IJCNN). IEEE, 2023. 

[2] Picco, Enrico, Piotr Antonik, and Serge Massar. "High speed human action recognition using a photonic 

reservoir computer." Neural Networks (2023). 

 

2.3 INTEGRATED OPTICAL DELAY DYNAMICAL SYSTEM BASED ON A DISTRIBUTED-FEEDBACK LASER 
 

Algorithm: Reservoir Computing 

Number of “neurons” : up to 250 

Performance on standard task 

Santa-Fe one step ahead prediction: NRMSE=0.109 

Nonlinear channel equalization: SER=0.03 (with 120 neurons) 

Speed  

Time for processing of one input: 254 ps 

Energy consumption: No estimate given 

Footprint: approx. 1cm2 (for the photonics integrated circuit) 

 

Reference 

Takano, K., Sugano, C., Inubushi, M., Yoshimura, K., Sunada, S., Kanno, K., & Uchida, A. (2018). Compact 

reservoir computing with a photonic integrated circuit. Optics express, 26(22), 29424-29439. 

 

2.4 ALL-OPTICAL INTEGRATED DYNAMICAL SYSTEM BASED ON EVANESCENT COUPLING BETWEEN 

RESONATORS (NUMERICAL SIMULATION) 
 

Algorithm: Reservoir Computing (space-multiplexed) 

Number of “neurons”: 12 – 48 

Performance on standard task 

Mackey Glass 3-step ahead prediction: NRMSE=0.037 (with Two Photon Absorption); NRMSE=0.07 (TPA + 

Free Carrier Dispersion); NRMSE=0.087 (TPA + Free Carrier Dispersion + Kerr effect). (Simulations). 

Speed  

Limited by intrinsic nonlinearity, so depends on material and resonator type, about 25 GHz for GaAs 

microrings 

Energy consumption 

Without supporting electronics: approx. 1 mW / neuron for GaAs microrings with a Q-factor of 105. 
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Footprint 

A few square mm for optical chip 

 

References 

Boikov, I., Brunner, D., & De Rossi, A. (2023). Evanescent coupling of nonlinear integrated cavities for all-optical 

reservoir computing. New Journal of Physics. 25 093056 

 

2.5 OPTOELECTRONIC WAVELENGTH-MULTIPLEXING DYNAMICAL SYSTEM (RC) 
  

Algorithm: (Deep) Reservoir Computing 

Number of “neurons” : 20 to 40 

Performance on standard task 

Nonlinear channel equalization (noiseless): SER=10-3 to 10-5 

Santa-Fe one step ahead prediction: NMSE: 0.04 to 0.004 

Speed  

Time for processing of one input: 5 ns 

Energy consumption: 2500W (most energy consumption comes from the Erbium Doped Fiber Amplifiers). 

Footprint: approx. 80*60 cm2  

 

Reference 

L. Butschek, et al. Photonic reservoir computer based on frequency multiplexing. Optics Letters, 2022, 47.4: 

782-785.  

A. Lupo, et al. Fully analog photonic deep Reservoir Computer based on frequency multiplexing. arXiv preprint 

arXiv:2305.08892, 2023. (Accepted for publication on Optica) 

 

 

2.6 OPTOELECTRONIC WAVELENGTH-MULTIPLEXING DYNAMICAL SYSTEM (ELM) 
  

Algorithm: Extreme Learning Machine 

Number of “neurons”: 20 - 60 

Performance on standard task 

Nonlinear Channel Equalization: SER<10-3 

Mushroom Classification: 95.1% 

 Speed  

Time for processing of one input: 0.5 s 

Energy consumption 

approximately 1600 W (including supporting electronics) 

 Footprint 

100cm x 50cm 
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References 

A. Lupo, L. Butschek, S. Massar, Photonic extreme learning machine based on frequency multiplexing. Optics 

express, 2021, 29.18: 28257-28276 

A. Lupo, S. Massar, Parallel extreme learning machines based on frequency multiplexing. Applied Sciences, 

2021, 12.1: 214.  

 

2.7 VECTOR-MATRIX MULTIPLICATION USING PHOTOREFRACTIVE HOLOGRAPHIC DIFFRACTION MATRIX 

IN INTEGRATED PHOTONICS 
 

Algorithm: Matrix-vector multiplication 

Number of “neurons”: 1000x1000 matrix 

 Performance on standard task 

4-bit resolution with 1% BER 

Speed 

1GHz processing rate 

1015 MAC/s 

Energy consumption 

Energy consumption including supporting electronics: 20W 

Footprint 

1.6x1.6 cm2 = 250 mm2 

  

Reference 

E. A. Vlieg, L. Talandier, R. Dangel, F.  Horst, J. B.  Offrein, An Integrated Photorefractive Analog Matrix-Vector 

Multiplier for Machine Learning. Applied Sciences. 2022; 12(9):4226 (concept) 

 

2.8 OPTOELECTRONIC NEUROMORPHIC SYSTEM USING EVENT BASED CAMERA 
  

Algorithm: Spiking feed-forward neural network using data recorded by an event-based camera 

Number of neurons: The optical side is used as an extreme learning machine and number of neurons is not 

given. On the electronic side, either one or two layer with 512 neurons per layer.  

 

Performance on standard task 

The setup was task-specific for flow cytometry (classification of two particles) and only evaluated on the data 

measurement collected for this task. 

 Speed 

The optical part of the setup runs in real-time, with a temporal resolution of 1µs.  
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The electronic system (Intel Loihi 2) is accessible only through the cloud and processes events accumulated 

over 10µs or 100µs.  

 Energy consumption 

Energy consumption of the electronic system: 0.55W 

Energy consumption of the optical system: unknown (simple laser) 

 Footprint 

approx. 50cm*10cm*10cm (free space optical setup) 

  

References 

1) Training a spiking neural network on an event-based label-free flow cytometry dataset. M Gouda, S Abreu, 

A Lugnan, P Bienstman. arXiv preprint arXiv:2303.10632, 2023. 

2) Flow Cytometry With Event-Based Vision and Spiking Neuromorphic Hardware. Steven Abreu, Muhammed 

Gouda, Alessio Lugnan, Peter Bienstman; Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (CVPR) Workshops, 2023, pp. 4139-4147 

 

2.9 INTERPOLATING MOTION PATTERN USING CONCEPTOR-BASED REGULARIZATION  
 

Algorithm: Backpropagation through time using conceptor-based regularization. Software implementation in 

python (using jax). 

Number of neurons: 512 

Performance on standard task 

dataset: Motion Capture (input dim.=94,output dim.=94) 

CMU_016_15 (walking) 

CMU_016_55 (running) 

NMSE: 0.1065 

Generalization Ability: Two-shot learning of continuous interpolation between walking and running  

Total time for training: ~4 Min 

Processor used: AMD Ryzen 7 6800 HS Creator Edition (~4.7GHz) 

Estimated energy consumption: 35W (CPU only) over ~240 secs 

 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Farxiv.org%2Fabs%2F2303.10632&data=05%7C01%7Cserge.massar%40ulb.be%7C78dad9dbb2844607838b08dbc9623098%7C30a5145e75bd4212bb028ff9c0ea4ae9%7C0%7C0%7C638325195781640468%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=c6%2F%2BLhwDuIA4lNLFprDysiOF%2BDRwj6x0v7KpGi82Swc%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fopenaccess.thecvf.com%2Fcontent%2FCVPR2023W%2FEventVision%2Fhtml%2FAbreu_Flow_Cytometry_With_Event-Based_Vision_and_Spiking_Neuromorphic_Hardware_CVPRW_2023_paper.html&data=05%7C01%7Cserge.massar%40ulb.be%7C78dad9dbb2844607838b08dbc9623098%7C30a5145e75bd4212bb028ff9c0ea4ae9%7C0%7C0%7C638325195781640468%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=75ecpChNfz5APAji%2BXiiB9acx8C8RvYNWbQDmGlixpc%3D&reserved=0
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