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Executive Summary
This deliverable reports on research related to the design and simulation-based evaluation of
multi-reservoir systems by 4 ESRs in the PostDigital project. Each contribution reflects (a part
of) the respective ESRs personal research project. As a consequence, these contributions dis-
cuss multi-reservoir systems of different types and use different evaluation strategy. Together,
these different contributions illustrate that the PostDigital project’s research topics stretch from
mature technologies and application domains, to innovative theoretical concepts and design
methodologies.

The first contribution (Section 1), the work of Sarah Masaad (ESR9, UGent-imec), focuses
on integrated (parallel) photonic reservoir computing systems. She proposes a hybrid serially
coupled multi-module system, consisting of (i) a photonic, on-chip reservoir, (ii) a KKK receiver
and (iii) digital post-processing. The tunable parameters in this system are jointly optimised
with backpropagation. Numerical simulation results demonstrate the successful reduction of
errors from a fiber-based telecommunication system by up to 4 times.

The second and third contributions report progress towards the realisation of multi-reservoir
systems with delayed feedback optoelectronic reservoir systems. The work of Tigers Jonuzi
(ESR11 - VLC Photonics) in Section 2 is focused on enabling technology for such devices. He
proposes an architecture for an analog readout layer for time-multiplexed reservoir computing.
The simulation results show how this architecture supports the performance of the reservoir
enabling real-time, low-latency signal processing beyond GHz range. Section 3 reports on the
work of Mirko Goldmann (ESR5, IFISC, UIB-CSIC), characterising the computational properties
of a (simulated) system of two coupled optoelectronic delayed-feedback reservoirs. He uses the
theoretical information processing capacity benchmarking tool Dambre et al. [2012] to analyse
the impact of different coupling schemes between the two reservoirs on computation. The
results show that, by changing the way the modules are coupled, one can boost two contrasting
properties, either long-lasting linear memory or high nonlinearity, adapting the overall system
to tasks with different demands.

Finally, the fourth contribution (work of Benedikt Vettelschoss, ESR10, UGent-imec) in section
4 focuses on novel approaches to open up new universal computation formalisms with reser-
voir computing. In particular, he re-investigates the finite state machine (FSM) paradigm and
a way to embed its switchable behaviour into the traditional reservoir model system: an ESN.
The long-term view is to create multi-reservoir systems in which one reservoir provides the
switchable behaviour (the state-transition graph of the FSM), while two (or more) other reser-
voirs translate the input into the desired excitation signals for this module, and transform the
input and state into the desired output. Since the last two functionalities could be provided
by previous work on multi-reservoir systems performed at UGent Freiberger et al. [2020], the
current work focuses on the missing (and most difficult) part of this system: embedding a state
transition graph into an ESN. Benedikt proposes to embed the desired network attractor into
an ESN by driving it towards a multiple Hopf bifurcation by means of unsupervised synaptic
plasticity. Given the theoretical nature of this approach, the deliverable text first introduces the
stepping stones that are necessary for understanding the solution. Proof of concept simula-
tion results for a two-state system are then presented. Simulations show how a simple ESN is
indeed driven towards a multiple Hopf bifurcation and next steps are outlined.
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1 Multi-Reservoir Network for Transceiver Nonlinear-
ity Equalization

1.1 Introduction

Multi-reservoir design is the use of a hierarchical topology to advance the performance of indi-
vidualistically operating reservoirs. In this section, we present simulation results pertaining to
such a network, used for the equalization of telecom transceiver errors. Our design of the multi-
reservoir topology involves a photonic recurrent structure that is cascaded with a feed-forward
electronic one. This work, done by Sarah Masaad at Ugent-imec, numerically demonstrates
the successful reduction of errors from a fiber-based telecommunication system by up to 4
times.

To meet current and provisioned data requirements, including those generated by cloud ser-
vices and Internet of Things devices, new technologies targeting short-haul systems and data
center interconnects are required. To address some of these challenges, self-coherent re-
ceivers like the Kramers-Kronig (KK) receiver allow the detection of both the phase and ampli-
tude of light without the high costs associated with coherent detection. However, this comes
at the expense of operational constraints that are required to ensure linearity of the receiver.
Namely, an unmodulated carrier must be transmitted with the modulated signal and should have
a significantly higher power. The power ratio between the unmodulated carrier and the mes-
sage signal is termed CSPR and should be at least 9 dB. In addition, the receiver processes
must operate at 6 samples/symbol (sps) instead of the standard 2 sps required for coherent
receivers. These constraints impose additional power and processing costs but are important
for correct operation. If these constraints are not respected, the receiver becomes nonlinearly
distorting, which introduces very high errors.

1.2 Methods

The proposed system operates based on a multi-network design, where a linear photonic reser-
voir cascaded with the KK receiver is a network followed by a feed-forward electronic network.
The entire system is trained through backpropagation such that an optimum set of weights is
found to best approximates the distorted signal to the target symbols. Furthermore, the system
is trained in a back-to-back setup (i.e., without a fiber), which allows targeting the nonlinear
transceiver errors. These errors originate from the receiver being operated at 3 sps instead of
the required 6 and at CSPRs below 9 dB. Training in this manner facilitates the operation of the
equalization network as a “plug-and-play” equalizer. This means that once trained, the solution
is tested in systems deploying standard single-mode fiber links varying between 10 to 60 km.
The network performs consistently well and reduces the overall BER by up to 4 times. Note
that since the network only addresses transceiver nonlinearity, the fiber-caused impairments
are addressed through Digital Signal Processing (DSP).

The proposed solution includes a photonic on-chip network trained following a machine learning
paradigm known as reservoir computing. Importantly, the reservoir replaces a bandpass filter
before the receiver, which is typically required in a self-coherent systems, and thus is not an
additional optical component. Since chromatic dispersion compensation should happen elec-
tronically, the combined behavior of the reservoir and receiver should be linear. By performing
nonlinear transceiver equalization under the condition of a linear output, cascading the optical
processing with digital processing is achievable.

The overall system is shown in Figure 1, where the training setup is denoted as pipeline b (blue)
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Figure 1: Schematic of a. (orange) system under study and b. (blue) training system. Black indicates
common blocks. Both systems are simulated with a reservoir for proposed method and an
ideal bandpass filter for benchmarking.

Figure 2: BER results vs link length for test set.

while the testing setup is pipeline a (orange). The blocks common to both pipelines are shown
in black. Furthermore, to benchmark the performance of the system, an ideal bandpass filter is
used as opposed to the use of the optical reservoir. The feed-forward network is kept for both
the benchmark and the proposed solution.

In the testing pipeline, ideal chromatic dispersion compensation (CDC) and blind-phase search
(BPS) are used to address chromatic dispersion and laser phase noise respectively.

1.3 Results

Figure 2 shows the achieved BER on 3 different transceiver conditions, where the CSPR is var-
ied between 6 and 8 dB. The benchmark deploying the bandpass filter is shown as dotted lines
whereas the multi-network proposed solution is shown as solid lines. The overall performance
shows up to 4 times improvement in BER across all length studied.
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1.4 Conclusion

This work will facilitate the deployment of self-coherent receivers like the KK receiver in short-
haul systems, since their operational constraints were considered debilitating. By relieving
some of these constraints through a simple and integrated solution, the achieved performance
falls below the required BER and as such can be used in, for example, data centers.

We are in the process of preparing these results for publication.
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2 Real-time delay reservoir computing for sequential
optical signal processing

2.1 Introduction

The field of analog machine learning holds significant promise in addressing the limitations of
traditional computing methods. As a result, there has been a growing focus on merging brain-
inspired concepts with the benefits of optical computing. Photonic integration stands out as
a formidable challenge in enabling broader applications in this domain. Reservoir computing
(RC) emerges as one of the most appealing approaches for hardware implementations. It offers
a conceptually simple yet powerful technique for training recurrent neural networks, overcoming
the need for optimizing connections between input and network nodes or among the network’s
nodes. This simplification dramatically reduces hardware complexity, allowing for a concen-
trated effort on optimizing only the output weights. For these reasons, Reservoir Computing
proves to be a well-suited method for processing sequential data, and numerous electronic and
photonic implementations have demonstrated exceptional performance in tasks like time series
prediction.

However, in most existing hardware implementations of RC, the output information is digitally
post-processed. This involves storing the output, and applying the necessary weighting and
summation offline, which results in the loss of the rapid real-time analog optical computing ca-
pabilities. In response to this challenge, we propose the development of an integrated readout
layer for a photonic implementation of RC. This readout layer will be capable of applying weights
and performing summations in the optical analog domain, enabling low latency and ultrafast
real-time processing. Our focus is on designing a readout layer suitable for delay-based reser-
voir computers, which rely on a single hardware node and a feedback delay loop. The following
design might not be central in realizing what is promised in the deliverable, but we believe it is
of crucial importance at the time of realizing in hardware multi-reservoir designs.

2.2 Methods

Photonic integrated neural networks hold the promise of delivering exceptionally high data
bandwidth while consuming minimal power and capitalizing on the inherent parallel process-
ing capabilities of light-based computing. Researchers have explored different methods of in-
tegrated time-delay reservoir computing, which involve simulating the inner workings of micro-
ring resonators or experimenting with semiconductor lasers, with and without external feedback
loops. However, it’s worth noting that all of these implementations necessitate post-processing
of the output signal in digital form.

The field of integrated photonics has matured to a point where various passive components
can be designed to fulfill the requirements of machine learning techniques. A simplified repre-
sentation of the necessary components for performing real-time operations like weighting and
summing of the output signal in a delay-based reservoir (with 4 virtual nodes) is depicted in
Figure 3(a). The optical analog readout system consists of an amplitude modulator to apply
trained optical weights, a cascaded setup of multimode interferometers (MMIs) for splitting and
combining signals, and delay lines to temporally align the delayed virtual nodes. Phase shifters
have also been introduced to either match phase for coherent summation or apply phase-based
weights.

Figure 3(b) provides a closer look at the optical signal after the delay lines in the proposed
scheme. The output signal is divided into various branches, each characterized by a delay line
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Figure 3: a) Simplified scheme of the integrated optical readout layer. b) Optical signal flow of three
inputs over each branch in the delay line stage. We define a time slot (blue) that corresponds
to the superposition of the virtual nodes.

multiple of θ, leading to a temporal overlap of the different nodes within the highlighted blue
time slot.

2.3 Results

To evaluate the performance of the introduced readout layer, we exploit a 3-bit-header recogni-
tion task, fed with a sequence of binary inputs (bits) with an on-top Gaussian noise. The task
is to classify the last three input signals into eight different classes. The simulated delay-based
reservoir can be implemented with a Mach-Zehnder modulator for the non-linearity and an op-
tical fiber for the delay. The Readout scheme used consists of the previously introduced 16
virtual nodes. The dynamics of this setup are described by the Ikeda-equation. The input pe-
riod is defined by T = N · θ, where N = 16 is the number of nodes and θ = 1 is the normalized
temporal separation of the virtual nodes. The delay τ of the reservoir is set equal to the input
period T. For the time-multiplexing we use a random mask with values drawn from a uniform
distribution u[0,1].

Fig. 4(a) depicts several steps of signal processing using a delay-based reservoir with the
proposed integrated readout layer. In Fig.4(a), we show the input signal for the 3-bit header
recognition task which will be double-modulated as typical in time-multiplexed reservoir com-
puters. In Fig. 4(b), we display the response of the reservoir for the 10 consecutive input bits.
The reservoir output is multiplied by the learned output weights w(t) resulting in the weighted
signal shown in c). The weighted states w(t)x(t) enter the simulated integrated PIC and the
nodes states are summed up to generate the continuous output signal ô(t). Negative phase
weights can be set by applying a π shift with the integrated thermal phase shifters in the PIC,
surrounded with deep trenches to maximize the efficiency. Fig.4(e) shows the output sampled
signal after summation, which indicates the reservoir prediction ô(k) with respect to the targeted
signal õ(k). For this example, we obtain a bit error rate of 0.004, in line with the state of the art
of Reservoir for 16 nodes.

2.4 Conclusion

The results based on numerical simulation show that the PIC readout supports the performance
of the reservoir enabling real-time, low-latency signal processing beyond GHz range. Future
studies will focus on improving the scalability limited by the modulation bandwidth. Further
improvements will be dedicated to replacing thermal phase shifters with optical MEMS or phase
change materials to minimize power consumption. Realizing a real-time, scalable, compact,
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Figure 4: Several steps in the signal processing using a delay-based reservoir and the proposed inte-
grated optical readout layer. In a) the input signal for a 3-bit-header recognition task. B) The
reservoir response for 10 consecutive bits. c) The weighted states. d) The PIC output. e) The
targeted signal (blue) and the reservoir prediction (orange).

and near-zero power readout interface is of crucial importance in the realization of analog
multi-reservoir design.

This work has been published in the conference proceedings of the European Conference on
Integrated Optics (ECIO) 2022 Jonuzi et al. [2022] and a second publication is in prepara-
tion.
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3 Memory engineering using a reversible deep reser-
voir

3.1 Introduction

Reservoir computing (RC) enables unconventional computing using untrained recurrent neural
networks where the training is based on a linear regression of the readout layer only Jaeger
[2001]. By applying time multiplexing on an input signal, RC can be implemented using a
single nonlinear node with delayed feedback, which enables a straightforward implementation
into hardware Appeltant et al. [2011]. Motivated by the success of deep learning, there is an
increasing interest in deep architectures relying on the RC scheme. Hierarchical coupled recur-
rent neural networks can enhance the computation of signals exhibiting multiple time scales,
benefiting time series processing Gallicchio et al. [2017,0], Manneschi et al. [2021]. Recently,
hardware implementation-friendly deep reservoirs were introduced relying on the delay-based
reservoir approach. These systems show promising performance and increased computational
speed compared to setups relying on a single layer Penkovsky et al. [2019], Goldmann et al.
[2020].

3.2 Methods

In the following, ESR5 analyzes the information processing capabilities of a two-layer architec-
ture that can be arranged in three different configurations. As shown in Figure 5, we consider a
delay-based reservoir for each layer. The three configurations arise by using different coupling
schemes accomplished by three simple switches S1, S2, and S3. Depending on the state of
the switches, we obtain two parallel and independent reservoirs (S1, S2 closed, S3 open) or a
deep reservoir, which considers a unidirectional connection between the layers such that the
information can flow either from layer 1 to layer 2 or in the reverse direction (S1 closed, S3

closed or S2 closed, S3 closed).

Figure 5: Scheme of two delay-based reservoirs that can be decoupled or unidirectionally coupled by
flipping the switches S1, S2 and S3. Each layer contains N = 80 virtual nodes, which are all
read out and used to train the output layer.

The two layers in Figure 5 might be implemented using, e.g., two optoelectronic Mach-Zehnder
modulators with delayed feedback loops. The dynamics of each layer can be described using
the following Ikeda equation:

ẋi(t) = −xi(t) + β sin2(xi(t− τi) + κJi(t) + b), i = 1, 2. (1)

Without loss of generality, we chose the feedback gain β = 1.6, the phase offset b = 0.2 and the
input gain κ = 0.2, equal in both layers. The only difference between the layers is the length of
the delays, which in the first layer (τ1 = 27.5) is close to the modulation time of the input signal
(T = 25), and in the second layer τ2 = 60, more than twice of that. As shown in Goldmann
et al. [2020], combining different delay lengths in a deep architecture influences the information
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processing and, e.g, can be used to increase the performance of the reservoir in forecasting a
chaotic time series.

The hierarchical order in the deep reservoir can be rearranged via the switch S3, such that the
first layer drives the second or the second layer drives the first.

J1(t) =

{
u(t) for parallel RC & deep RC 1-2
x2(t) for deep RC 2-1

J2(t) =

{
u(t) for parallel RC & deep RC 2-1
x1(t) for deep RC 1-2

The reservoir is fed by inputs that are randomly drawn from a uniform distribution u(k) ∈ [−1, 1].
Using the response of N = 80 nodes per layer, we compute the information processing capacity
(IPC) of the three architectures Dambre et al. [2012]. The IPC gives insight into the linear and
nonlinear transformations performed by the reservoir and it provides information on how well a
reservoir can reproduce past inputs while being driven with uncorrelated data.

Figure 6: The information processing capacity (IPC) of parallel RC and the two deep configurations. In
a) the different degrees of the IPC are color-coded, while the length of the bar represents the
total IPC. The red color indicates the linear memory, while from red to green the nonlinearity
of the memory increases. In b) the temporal profile of the linear memory is shown for all three
configurations. Hereby, a linear memory of one indicates the reservoir can fully reproduce the
input u(k − n). In panel c), d) and e), the temporal profile of the different degrees of the IPC
is shown. During the computation of the nonlinear IPC, the reservoir also has to reproduce
products of inputs at different times into the past, e.g u(k−3)u(k−6). Here, we refer the depth
n to the largest distance into the past.

3.3 Results

In Figure 6 a), we show the distribution of the IPC split into linear and nonlinear degrees for
the three architectures mentioned above. We find that the IPC of the parallel RC gets close to
the theoretical limit that is given by the total number of virtual nodes (IPCmax = 160), whereas
the two possible deep reservoirs exhibit a reduction of their total IPC. Nevertheless, it can be
seen that the deep RC 2-1 reaches the highest linear memory. By analyzing the temporal
profile of the linear memory, as shown in Figure 6 b), we obtain that the deep RC 1-2 has a fast
degrading linear memory, and the parallel RC exhibits several gaps in the linear memory arising
from the long delay τ2. The deep RC 2-1, due to the interplay of the layers, can close these
linear memory gaps up to n = 13 and further the linear memory decays slower than in the other
two configurations. In panels c), d), and e) of Figure 6, we show the distribution of all degrees
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of the IPC over the temporal depth n. In Figure 6 c), the parallel uncoupled RC reveals several
specific gaps in the profile where the memory strongly reduces, e.g., at n = 8, 12. These gaps
can be overcome by the deep RC 1-2, which provides a dense IPC distribution up to n = 16 in
Figure 6 d). The IPC profile can be extended to longer depths in the case of the deep RC 2-1 at
the cost of reducing the presence of nonlinear memory contributions beyond the cubic terms,
as shown in Figure 6 e).

3.4 Conclusion

In this study, we demonstrate that reservoir configurations containing two nodes with delayed
feedback can be used to engineer different memory profiles. By reversing the hierarchical or-
der of the deep reservoir, one can boost two contrasting properties, either long-lasting linear
memory or high nonlinearity. We show how the configurations of the proposed reservoir archi-
tectures are modified using simple switches and how the reservoirs can be adapted for tasks
with different demands.

The results of our study where presented (online) at the Deep Learning in Unconventional
Neuromorphic Hardware workshop of the (virtual) IJCNN 2021 conference (Goldmann et al.
[2021]).
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4 Finite state computation at the edge of stability

4.1 Introduction

Any theory of post-digital, co-digital or "somehow more general than"-digital computation must
give a unifying account of the symbolic processing of digital computers and analog computation
associated with dynamical systems. In fact, all available rigorous definitions of computation are
to be found in the digital realm, whereas the computational properties of dynamical systems re-
main characterized as real-time and online but no structured account of what actually happens
while a system computes is given.

Finite state machines and network attractors The reason for this discrepancy is undoubt-
edly the availability of a theoretical model for all symbolic computation - the Turing machine
(Turing et al. [1936]), while no such overarching framework exist for dynamical systems in gen-
eral. While the Turing machine relies on an infinite tape that serves as storage for memory and
instruction sets, its finite resource analogue - and hence the model underlying all physically
realized computing machinery - is the finite state machine. A finite state machine accepts or
rejects a given input string composed of the elements of a finite alphabet. It does so by travers-
ing a finite set of states, with transitions triggered by reading the symbols that make up the
string one at a time. A finite state machine is usually visualized as a graph, whose nodes are
the states of the machine and transitions are indicated by directed edges with the associated
symbols annotated.

A number of studies have attempted to identify principles that allow to carry out the discrete
time symbolic computations achieved by digital computers using the dynamics of a continuous
dynamical system. They all aim at embedding the graph structure of an FSM into a system’s
state space. Most notably, the theory of network attractors has been able to provide a mecha-
nism that implements a given finite state machine graph in a type of continuous time recurrent
neural network (Ashwin and Postlethwaite [2021]). However, their method still requires a very
specific form of equation, while a theory of finite state computation in general dynamical sys-
tems should be applicable to any given system.

In this report we connect a certain dynamical regime - the edge of stability - rather than a
specific equation to the emergence of network structures possibly supporting symbolic compu-
tation.

Self-organization and the edge of stability While the computational power of algorithmic
computation devices - and hence finite state machines - increases with the number of possible
states, for the sort of cybernetical computation carried out by continuously evolving dynamical
systems no clear-cut quantifications of their computational power exist. While attempts have
been made to develop measures that assess a system’s information processing capacity inde-
pendently of an input signal (Dambre et al. [2012]), most studies resort to heuristically pointing
out dynamical features of the undriven system and make more or less vague claims about their
computational benefits. One of the proposed features is the edge of stability, a configuration
in which a system is close to changing the number and/or stability of its equilibria - a bifurca-
tion point. Much confusion has been spread concerning the general benefits of this dynamical
regime. Some clarity has been provided in Yildiz et al. [2012], pointing out that the dynamical
regime of an autonomous system is never beneficial in general but always must be consid-
ered in relation to the driving input. A system with a fixed point that is barely stable takes a
long time to relax back to equilibrium upon a perturbation. It thus has a long linear memory
span. Consequentially, for tasks requiring such long memory spans this configuration may be
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desirable while for others that necessitate strong nonlinear transformations it may not, due to a
fundamental trade-off between memory and nonlinearity (Dambre et al. [2012]).

In this work we propose a scenario in which a graph structure is embedded in the state space
of a dynamical system at the edge of stability. We do not therefore claim that this is a gener-
ally advantageous dynamical regime, but rather that a system near the edge of stability might
be able to utilize this graph structure to carry out a certain kind of tasks - namely symbolic
processing by means of finite state computation.

4.2 Methods

Here we define the necessary concepts, taken mainly from dynamical systems theory. We
briefly treat stability of equilibirum points and elementary bifurcation theory. Then we introduce
the notion of a network attractor. Our interest will be particularly in the multiple Hopf bifurca-
tion and associated amplitude equations derived by the method of normal forms. These two
concepts will be explained in detail and subsequently a principle of self-organization will be laid
out, which may be used to drive a given dynamical system to the neighbourhood of a multiple
Hopf bifurcation point.

4.2.1 Equilibria, stability and bifurcation in dynamical systems

Dynamical systems theory is - as the name suggests - concerned with the mathematical de-
scription of systems evolving in time. For ordinary differential equations,

ẋ = f(x), (2)

that describe the dynamics of a finite number of state variables collected in the vector x, long-
term behaviours are of particular interest because they determine a systems dynamics once
initial transients have died out. The simplest such long-term dynamics are those in which the
system approaches a steady state, i.e. where

ẋ∗ = f(x∗) = 0. (3)

The points for which Eq.(3) holds are fixed points of a system. All fixed points have in common
that a system, initialized directly at the point will stay there indefinitely. Three different types of
fixed points may be distinguished, though, according to what happens when our system gets
slightly perturbed from the equilibrium solution. For stable fixed points, perturbations decrease
as time increases, hence there exists a neighbourhood of the point in which it attracts all tra-
jectories. The converse is true for unstable fixed points, where an infinitesimal perturbation
away from the fixed point grows in magnitude and trajectories are repelled either to a different
equilibrium or they diverge to infinity. Finally, a fixed point may be stable to some perturbations
and unstable to others. In that case, starting from the point there are directions in which it is
attracting, and others in which it repels and we speak of a saddle point. Figure 7 illustrates
the three kinds of stabilities discussed for one-dimensional systems. In fact, if there is only a
single state variable, these are the only long-term dynamics that can be observed in systems in
continuous time. With increasing dimension of the state space, the range of possible dynamics
becomes broader and more complicated. Dimension two introduces limit cycles, i.e. periodic
orbits through state space that smoothly connect back to themselves. Systems with a limit cy-
cle in state space may display oscillatory behaviour. Similar to fixed points, limit cycles come
in stable and unstable variants. A limit cycle, however, can only exist around a fixed point (or
around other limit cycles which ultimately surround a fixed point) and stability of the cycle is
determined by the stability of the fixed point. Figure 8 illustrates the two possible scenarios: a
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(b) unstable
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Figure 7: Three different types of stability in one-dimensional systems. (a) Stable fixed point (b) Unstable
fixed point. (c) Saddle point.

(a) stable (b) unstable

Figure 8: Stability of limit cycles in a 2D system. (a) Stable limit cycle surrounding an unstable fixed
point. (b) Unstable limit cycle surrounding a stable fixed point.

single limit cycle must enclose an unstable fixed point if it is itself stable (Fig.8(a)). Conversely,
an unstable limit cycle must have a stable fixed point in its interior (8(b)).

In dimension 3 and higher systems might display deterministic chaos. Since in the context of
our work chaos is not of immediate relevance, the interested reader is referred to the standard
literature, e.g. Strogatz [2018], Guckenheimer and Holmes [2013], Ott [2002].

Linear stability analysis How then, is stability of fixed points assessed? Suppose that for
a given system we have found a fixed point x∗ satisfying Eq.(2). To determine its stability
properties we want to know how the system reacts to infinitesimal perturbations away from
the point. We can find out by zooming in closely to the immediate neighbourhood of the fixed
point in question. Whereas the original Equation may possibly be nonlinear and trajectories
wind through state space in curves, the further we zoom in around a point, the closer the
appearance of these curves will get to straight lines. That means our system will be well
approximated by a linear equation for which it is easy to assert whether perturbations grow or
decay. Mathematically, the zooming in operation is achieved as follows:

1. Taylor-expand the governing equations around the fixed point of interest

2. Truncate the Taylor expansion to involve only linear terms. Hence, the truncated system
takes the form ẋ = Ax, where x is the n-dimensional state vector and A is an n × n
matrix. This is called the local linearization of the system.

3. For a one-dimensional system, the matrix A is in fact a scalar and we may read off stability
from its sign. For higher dimensional systems, however, we have to
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4. compute the eigenvalues λi of the matrix A. The fixed point is classified as

(a) stable when all eigenvalue real parts Re(λi) < 0.

(b) unstable when all eigenvalue real parts Re(λi) > 0.

(c) a saddle-point when some eigenvalues have negative and others have positive real
parts.

Elementary bifurcations So far the state of the systems we considered changed with time
along the contours of its state space. Now, we will consider a system that additionally depends
on a set of parameters θ. Hence,

ẋ = f(x, θ). (4)

This additional dependence allows state space itself to change as a parameter is varied. In
particular, the number and stability of equilibria may change. When this happens we say that
our system, or one of its fixed points, undergoes a bifurcation. While there is a whole zoo of
bifurcations involving the collision of two fixed points, fixed points and limit cycles or multiple
limit cycles, we will for now focus on the elementary bifurcations only, that is those in which a
single fixed point loses stability to a novel structure appearing in state space. The appearance
of new fixed points or limit cycles in an elementary bifurcation in fact always entails a change
of stability for a previous equilibrium state.

From the classification scheme above we can hence already infer a method to detect ele-
mentary bifurcations. Since during a bifurcation an equilibrium changes stability, a fixed point
bifurcates when, by varying a parameter, an eigenvalue of its local linearization goes from hav-
ing negative real part to having positive real part. Since eigenvalues are either real or come in
complex-conjugate pairs we may differentiate two bifurcations that will be relevant later on. In a
saddle-node bifurcation, a stable and an unstable fixed point collide and annihilate each other.
Linearizing around the stable of the two fixed points involved, we observe a single eigenvalue
changing sign from negative to positive by going through zero on the real line in the complex
plane. At the same time an eigenvalue of the unstable fixed point becomes negative. This sce-
nario will be important in the next Section 4.2.2. Of particular importance in the present context
is the Hopf bifurcation. In a Hopf bifurcation a pair of complex-conjugate eigenvalues crosses
the imaginary line in the complex plane and a fixed point changes stability while a periodic orbit
emerges around it. This case will be treated in all detail in Section (4.2.3) below.

4.2.2 Heteroclinic and excitable network attractors

In this Section we give an introduction to the concept of network attractors. Network attractors
have been previously introduced to identify and embed network structures in neural networks
Ceni et al. [2020], population ecology Hofbauer and Sigmund [1998] and pattern formation
Küppers and Lortz [1969]. In Ashwin and Postlethwaite [2021] they have been identified as a
mechanism enabling sensible finite state computation in a type of continuous time RNNs.

A network attractor consists of a set of fixed points and dynamical connections among them.
Based on the asymptotic stability properties of the set of fixed points one may classify them
into heteroclinic and excitable networks (cf. 13 below). In a heteroclinic network all fixed points
are of saddle type. Hence, if we concern ourselves with the systems local linearization around
each of the points, we find stable subspaces in which the fixed point is attracting and unstable
subspaces in which it is repelling. To forge a collection of saddle points into a heteroclinic
network, we now require that for every fixed point all of its unstable subspaces are the stable
subspace of another. Thereby, the system may move from one fixed point to another along an
invariant subspace. The flow in the invariant subspaces of a cyclic heteroclinic network is shown
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(a) (b)

Figure 9: Flow along coordinate planes of a network attractor. (a) A cyclic heteroclinic network. (b) A
cyclic excitable network.

in Fig. 9(a). Trajectories will approach each of the saddle points in turn, with rapid transitions
among them via the invariant coordinate planes. As the system evolves, trajectories approach
each of the fixed points closer and closer and the time spent in their vicinity diverges.

An excitable network consists of fixed points that are locally stable, hence there is no dynamical
connection between equilibria as in the heteroclinic case. Thus, left on its own, trajectories from
a random initial state will approach one of the fixed points and remain in its vicinity indefinitely.
However, a switch may be induced by subjecting the system’s evolution to an external signal,
which pushes the system’s state over the line separating two equilibria’s basins of attraction
(Fig.9(b)). We speak of an excitable connection from point x∗

i to x∗
j , when the distance of x∗

i to
the border separating the two point’s basins of attraction subceeds a predetermined excitablity
threshold. Consequentially, in both the heteroclinic and excitable case only one directed con-
nection is possible per invariant subspace.

The existence of invariant subspaces among which transitions between fixed points may take
place is itself not common. However, systems whose governing equations possess symmetries
naturally possess invariant subspaces. For example, the system described by Guckenheimer
and Holmes [1988] is of the form,

ẋi = xi

li +
n∑

j=1

Aijx
2
j

 . (5)

This equation is symmetric under permutation of its variables and reflection about the origin.
Guckenheimer and Holmes show that this allows for a heteroclinic cycle between three equilib-
ria by imposing constraints on the coefficients Aij .

Heteroclinic and excitable connections are closely related as one may turn into the other via a
saddle-node bifurcation. Correspondingly, the same type of Equation with different param-
eters may implement an excitable network, as demonstrated in Ashwin and Postlethwaite
[2021].

4.2.3 The multiple Hopf bifurcation

Of particular interest for the study at hand is a bifurcation scenario in which a stable fixed point
becomes unstable and a single or multiple stable periodic orbits emerge around it. The situ-
ation in which a single periodic orbit is born is referred to as a supercritical Hopf bifurcation
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(Strogatz [2018]). Consequently, we will call a configuration in which multiple periodic orbits
arise the multiple Hopf bifurcation. The Hopf bifurcation is characterized by a complex conju-
gate pair of eigenvalues crossing the imaginary line in the complex plane. Figs.10 and 11 show
examples of the ensuing dynamics. There are two cases to be differentiated. In the supercriti-
cal case (Figure 10) a stable fixed point loses stability in favor of a stable oscillation around it.
Conversely, in the subcritical case (Figure 11 an unstable fixed point becomes stable and an
unstable periodic orbit is born around it.

Here we are interested only in the supercritical case. However, given a system at a Hopf
bifurcation, how do we determine the stability of the limit cycle and hence if the bifurcation is
sub- or supercritical? The classification procedure described in Section 4.2.1 is only applicable
for hyperbolic fixed points, i.e. when eigenvalues have nonzero real parts. At the bifurcation
point the leading terms of the Taylor expansion carry no information regarding stability. Thus
determining the bifurcating limit cycle’s stability requires taking into account higher order terms.
A systematic way of treating higher order terms is provided by the method of normal forms
(Murdock [2003]). For the single Hopf bifurcation it allows to derive equations for the phase and
amplitude of the periodic solution. In particular, the resulting amplitude dynamics are described
by

ṙ = r
(
µ+A11r

2
)
+O(5). (6)

Here, µ denotes the real part of the pair of complex conjugate eigenvalues crossing the imag-
inary line. The stability of the limit cycle can now be read off the coefficient A11, as the asso-
ciated term in the equation serves as a nonlinear damping or amplification depending on its
sign.

For A11 < 0 the amplitude dynamics have a stable nonzero fixed point, the limit cycle is thus
itself stable and the bifurcation supercritical. The converse is true in the subcritical case. For
A11 = 0, next higher order terms must be consulted.

A similar procedure might be carried out in the case of multiple simultaneously occurring Hopf
bifurcations. The resulting amplitude equations then become slightly more involved, as in
addition to the self-damping term Aii found already in Equation 6, we find interaction terms
Aij :

ṙi = ri

µi +
n∑

j=1

Aijr
2
j

+ h.o.t. (7)

The interaction terms couple the amplitude dynamics of the i-th and j-th bifurcating limit cycles.
We note that this is essentially equivalent to Eq. (5) introduced in Section 4.2.2. It possesses
the same symmetries allowing heteroclinic or excitable connections of fixed points along in-
variant subspaces of the dynamics. Stable fixed points in the amplitude dynamics, however,
translate into stable oscillations of the full system close to the bifurcation point. This mech-
anism has been proposed in Melbourne [1989] as producing intermittency: approximated to
third order, the original system transitions among oscillations according to a network structure
encoded into the matrix of interaction terms Aij . Adapting a system to the multiple Hopf bi-
furcation point with specific values for the interaction terms hence seems like a viable path to
embed a graph structure as a network attractor onto a dynamical system at the edge of stability.
Furthermore, if the network attractor is excitable, it may allow sensitive finite state computation,
where states correspond to oscillations. A self-organized feedback mechanism that drives a
given system into the vicinity of a multiple Hopf bifurcation point will be introduced in Section
4.2.4.
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Figure 10: Dynamics in the course of a supercritical Hopf bifurcation. Figure from Kuznetsov [2006].

Figure 11: Dynamics in the course of a subcritical Hopf bifurcation. Figure from Kuznetsov [2006].

4.2.4 Self-organization towards the edge of stability

In this Section we will review a mechanism proposed by Magnasco et al. [2009] to drive a simple
linear model of a neural network to a critical state. As an instance of unsupervised anti-Hebbian
’synaptic’ adaptation the proposed learning rule in conjunction with the neural network model
exhibits self-organized criticality. Concretely, the proposed learning rule is set to work on the
system

ẋ = Wx, (8)

where W is the matrix of synaptic connection strengths. The learning rule consists of a constant
driving term and a balancing anti-Hebbian term:

Ẇ = α
(
I− xxT

)
. (9)

In Magnasco et al. [2009] the authors argue that the constant driving term drives the eigen-
values of W towards and beyond the critical line where their real part is zero - hence through
a bifurcation point. After the associated bifurcation occurred, spontaneous dynamics emerge
in the subspace spanned by the corresponding eigenvectors. Subsequently, the anti-Hebbian
term will pull the eigenvalues real part back to the subcritical regime and the process begins
again. In this manner, after some time all eigenvalues real parts will oscillate in a small strip
around 0 with the strips magnitude determined by the time scale parameter α. This entails
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’breakout’ dynamics where the different modes of the system become unstable in turn and are
quickly damped again.

We adopt the learning rule Eq.(9) and adjust it to modify the feedback weights of a small
recurrent neural network (RNN) in continuous time. The RNN’s update equation are given
by

1

τ
ẋ = −x+ tanh [(W +Wfb)x] (10)

The entries of the weight matrix W ∈ Rn×n are drawn from the standard normal distribution
and rescaled such that all eigenvalues of W − I, the Jacobian matrix of Eq.(10) evaluated at
the origin, have negative real part. The feedback weights Wfb ∈ Rn×n are initialized to be all
zero. Since in contrast to Magnasco et al. [2009] our system is nonlinear, a careful tuning of the
relations between timescales in Eqs.(10) and (9) is in order. To this end we introduce separate
scaling parameters for the two terms in Eq.(9) which now reads

Ẇ = αI− βxxT . (11)

We find empirically that separating the timescales τ, β and α by one order of magnitude respec-
tively keeps the eigenvalue oscillations within reasonable bounds.

4.3 Results

In this Section we report on the dynamics evoked by the self-organized criticality mechanism
described above. We first show how our method drives a four neuron RNN in continuous time
to the critical regime, where the double Hopf bifurcation occurs. Then we report on some of the
structures found in the associated amplitude dynamics and give examples of heteroclinic and
excitable connections that we believe provide potential for embeddings of finite state machine
graphs.

Figure 12 shows the dynamics of a four neuron RNN in continuous time as described be
Eq.(10), where feedback weights are adapted according to the discussed learning rule Eq.(11).
While panel (b) depicts the evoked dynamics, panel (a) shows the time evolution of the Jaco-
bian’s eigenvalues separated into real and imaginary parts. Similar to what has been discussed
for the linear case in Section 4.2.4, we find that real parts approach the critical zero line from be-
low beyond the bifurcation point. Sufficiently greater than zero the plasticity rule’s anti-Hebbian
term pulls the eigenvalues back to the critical line where the process begins again and hence
real parts oscillate in a narrow strip around zero. In contrast to the linear case reported in
Magnasco et al. [2009], imaginary parts do not remain unchanged during adaptation, which
is undoubtedly attributable to the nonlinearity in our system. In particular, it may happen that
complex-conjugate eigenvalues collide on the real line and split off into two real eigenvalues.
If this happens our analysis of the amplitude equations becomes invalid as we are not in the
vicinity of a Hopf bifurcation point anymore. While this phenomenon deserves some attention in
the future, for now we restrict ourselves to the case where eigenvalues stay complex-conjugate
for all times.

During adaptation, our system traverses through a multitude of parameterisations as indicated
by the time evolution of eigenvalues. As long as two complex-conjugate pairs remain in the
neighbourhood of the critical line, the amplitude equations derived via the method of normal
forms vary continuously and we may plot the resulting amplitude vector fields. This is done in
Figure 13 for the time steps I and II as indicated in Figure 12. Panel (I) shows an excitable
connection from the fixed point lying on the r2-axis to the point lying on the r1-axis, whereas
panel (II) shows a heteroclinic connection in the opposite direction.

Through adaptation of feedback weights we have thus driven our system into a regime where
it contains a (very simple, for now) network attractor.
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Figure 12: Dynamics under the self-organized plasticity rule Eq.(11). (a) Eigenvalues λi of the Jacobian,
real parts as solid lines, imaginary parts as dashed lines. Color code indicates complex-
conjugate pairs. (b) Ensuing neural dynamics. Vertical lines mark timesteps for which ampli-
tude dynamics will be investigated further on.
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Figure 13: Amplitude vector fields for selected time steps in Fig. 12. (I) Example of an excitable connec-
tion. (II) Example of a heteroclinic connection.

4.4 Conclusion

This study constitutes a first proof of concept, that dynamics in networks may arise naturally in
a system driven to the edge of stability by means of self-organization. Note, however, that what
is happening in the amplitude equations so far is relying on a third order approximation of the
original system. A peculiarity of the (multiple) Hopf bifurcation normal form is, that it contains
only odd-powered terms. Hence, the equation’s symmetry properties allowing for heteroclinic
or excitable connections are not lost, but additional constraints must be met when introducing
higher order terms.

Furthermore, so far we have successfully driven a system into the vicinity of a multiple Hopf bi-
furcation point and then merely detected some occurring heteroclinic and excitable connections
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in the associated amplitude equations. Future work may concern the guided self-organization of
a dynamically critical state that yields the desired structure in the interaction terms. At present
tuning interaction terms by means of backpropagation and automatic differentiation are investi-
gated. Finally, any useful finite state machine has more than two states and dynamical systems
considered to be computationally powerful most definitely have more than four state variables
(think: neurons in the brain). For systems with more degrees of freedom it is moreover un-
realistic to require that all modes of the linearization around one of its equilibria be critical.
Eigenvalues well in the stable regime may not be associated directly to bifurcating solutions
of the dynamical system. They do, however, have an influence on the interaction terms in the
amplitude equations.

In short, the presented mechanism is a first attempt at shedding light on the potential symbolic
computational power of dynamical systems. It remains to be revealed how this mechanism
integrates into the zoo of fascinating phenomena that constitute complexity.

This work has been accepted as a poster presentation in the session on Theory: new concepts
and mathematical foundations at the International conference on neuromorphic, natural and
physical computing (Vettelschoss and Dambre [2023]).
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