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1 Introduction
Biological brains perform extremely complicated tasks and carry out these computations with a
remarkably low energy budget. For example, the human brain categorizes, predicts and creates
with a power consumption only about 20 W. This fact has turned them into a benchmark in the
data processing context and has inspired the creation of new technologies, as it is the case of
Artificial Intelligence (AI) [1,2].

AI has the potential to drastically change almost every aspect of our lives thanks to its applica-
tion to a wide variety of fields, as for example medicine or transportation. The past six years
has seen a renaissance in AI consequence of the development of Deep learning with artificial
neural networks (NN), which is a particular type of algorithm inspired in the brain. Thanks to
this, incredible performances have been achieved in tasks as for example image recognition or
language translation, among others [3–5].

Although current digital computers are capable of high-precision calculations, they expend vast
amounts of energy when carrying out cognitive tasks similar to those the brain is so successful
at [1, 3, 5]. This is a consequence of the differences at the physical and architectural level
between these two systems. Some particular examples of these differences are the use of
synapses and neurons, instead of memory blocks and transistors; taking advantage of the
stochasticity of cells, instead of relying on high precision circuits; the use of both binary and
analog coding, instead of just binary coding; relying on asynchronous communication, instead
of the single clock for synchronous communication; the serialised von Neumann architecture in
contrast to the brain’s parallel one [1,3].

Moreover, in addition to the drawbacks related to the energy consumption, conventional com-
puting systems can no longer satisfy the growing computing demands, as Moore’s law (expo-
nential hardware scaling) is slowing down [3,6].

All this has inspired the development of a new discipline known as Neuromorphic Computing,
which main objective is building large scale “bio-inspired” hardware that reproduces ANN’s
topology in order to achieve computational efficiencies similar to those of a human brain, as
well as maximal computing performance [3, 7]. Thus, it would make possible to overcome the
performance limitations inherent in traditional von Neumann architectures [3]. On the other
hand, a transformation is taking place within this field, where a branch known as neuromorphic
photonics is becoming more relevant. The main reason is that by using photonics, it is possible
to achieve high energy efficiency, large bandwidth and low latencies, overcoming fundamental
issues in digital and analog electronics [2,3,5].

Within the context of Neuromorphic Computing, one of its major exponents is the framework
known as Reservoir Computing (RC) [8]. Its main feature is the use of a Recurrent Neural
Network (RNN) known as reservoir that maps the inputs into a high-dimensional space and
a readout for processing the high-dimensional states in the reservoir. As the training process
only takes place in the readout, the reservoir is a very good option for hardware implemen-
tation. Thus, several physical systems, substrates, and devices have been proposed for this
purpose. Moreover, such physical reservoir computing has attracted increasing attention in di-
verse fields of research [8,9]. One of them is the mitigation of non-linear impairments in optical
communication systems.
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2 The Nonlinearity Problem in Optical Fiber Commu-
nications

2.1 Propagation of Light in the Fiber

The fundamental equation used to describe the propagation of light along an optical fiber is
commonly referred to as the nonlinear Schrödinger equation (NLSE) [10] and can be derived
directly from the Maxwell equations, which describe the foundations of electricity and mag-
netism [11]. The NLSE reads as:

∂E

∂z
= (L̂+ N̂)E, (1)

where E is the electrical field as a function of the propagation distance z and time t. D̂ and N̂ ,
describe the linear and nonlinear parts of the NLSE, which are given by:

L̂ = −α
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N̂ = jγ|E|2︸ ︷︷ ︸
Kerr effect

,

where α, β2,3, and γ are the attenuation, the group velocity dispersion (GVD), and the nonlinear
coefficient, respectively. If we substitute L̂ and N̂ from Eq. (2) into Eq. (1), it provides the explicit
form of the NLSE:
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Eq. (3) is suitable to model optical fiber transmission when transmission along a single-polarization
only is explored, e.g., intensity-modulation with direct-detection systems [10]. However, a co-
herent transceiver employs advanced digital signal processing (DSP) which enables detecting
a dual-polarization signal, thus doubling the spectral efficiency of the system. In this context,
the linear and non-linear interactions between the two signal polarizations must be taken into
account. Consequently, the NLSE of Eq. (3) is extended in a vectorized form:
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This pair of equations is commonly referred to as “the Manakov equation”, and it involves both
polarization states. Here, EX and EY represent the two orthogonal polarization components
of the electric field E. In addition to the two polarizations, Eq. 4 properly averages the impact
of residual birefringence that leads to fast polarization changes. Since the polarization state
of the electric field changes rapidly, the resulting nonlinearities do not correspond to the ones
from a linearly or circularly polarized field but to an average over the entire Poincaré sphere.
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The previous equations do not take into account, for example, stimulated Raman scattering
(SRS). The SRS is a nonlinear effect that leads to the depletion of power from short to long
wavelengths, achieving its maximum efficiency when the signals are separated by ∼100 nm.
The Raman effect has mainly been explored to design distributed Raman amplifiers. Indeed,
the SRS impact is usually negligible in C-band only systems, which occupy ∼35 nm. However,
with the advent of ultra-wideband optical systems, SRS will become the main transmission
impairment in optical networks [12].

2.2 Channel Capacity Limitations caused by Nonlinear Kerr Effect

The non-linear part of Eq. (4) imposes a severe limitation on the maximum achievable through-
put in an optical fiber. In fact, the information theory indicates that the capacity of a linear
channel increases monotonically by raising the transmitted signal power (or rather signal-to-
noise ratio, SNR) [13]. This theoretical limit is also commonly referred to as Shannon’s limit.
However, in fiber optics, this tendency does not hold because the term

(
|EX |2 + |EY |2

)
EX,Y

becomes progressively more important as the transmitted signal power increases, thus causing
phase distortions that limit the maximum throughput in the network [14]. Consequently, there
is an optimal optical signal power that balances the achievable maximum SNR and the signal
distortion induced by the optical fiber’s nonlinear behavior.

These peculiar aspects of fiber propagation have been widely investigated, together with miti-
gation techniques, in both the optical and digital domains. The next subsection provides a brief
overview of some studies carried out to mitigate the nonlinear Kerr effect in the digital domain.
Nevertheless, a more complete review can be found in, e.g., Ref. [15].

2.3 Mitigation of Fiber Propagation Effects

Eq. (4) is a multi-domain differential equation that does not have a closed-form solution. A pos-
sible way to solve it is to apply the “Split-step Fourier method” (SSFM). This method assumes
that the linear (L̂) and Kerr nonlinear (N̂ ) effects can be separated and solved independently
when a propagation step-size small enough is considered, alternating between them along
the optical fiber. A more detailed description of this approach can be found in Refs. [16, 17].
The absence of an analytical solution for the Manakov equations makes the perfect compen-
sation of transmission effects very difficult. Additionally, and as an example, the loss of the
phase information severally limits the compensation of transmission effects in direct-detection-
based receivers (RXs). However, thanks to coherent detection, the amplitude and phase of
the transmitted signal can be simultaneously detected at the RX input, which enables applying
enhanced DSP algorithms to at least partially compensate for transmission effects. Indeed,
the linear effects, such as GVD and polarization mode dispersion (PMD), can be fully com-
pensated for in the electronic domain by using a frequency domain equalizer in conjunction
with a multiple-input multiple-output (MIMO) equalizer. On the other hand, the compensation
of the Kerr nonlinear effects that induce a self- and cross-phase modulation (SPM and XPM,
respectively) on the transmitted signal is much more difficult.

The full compensation of the Kerr effect is troublesome as the equalizer would require complete
knowledge of the propagation channel itself (for the SPM compensation), of the neighboring
channels (for the XPM compensation), and of the amplified spontaneous emission (ASE) noise
(intertwining with both SPM and XPM). Nevertheless, several methods have been proposed to
digitally mitigate nonlinearities. Among them, the most relevant ones that are worth to be ex-
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plicitly mentioned and described are: 1) maximum likelihood sequence estimation (MLSE); 2)
Volterra-series based equalizers; 3) DBP; 4) NN-based techniques (we provide some respec-
tive references below).

MLSE is the optimal method as long as there is no limitation on the number of states of the trellis
code, as shown by [18] for coherent- and by [19] for direct-detection systems. However, com-
plying with this limitation means that it may become too complex and its potential commercial
application ended with 10 Gb/s systems [20], where it has been mainly used to compensate for
GVD. At current high symbol rates, it seems unrealistic to implement a sufficiently low-power-
consumption MLSE equalizer.

Volterra equalizers were proposed in the ’70s for satellite communications [21], and provide
a nonlinear version of the widely used finite impulse response (FIR) filters. They are based
on the mathematical technique developed by Vito Volterra, which is an extension of Taylor’s
series but for a general function. Volterra equalizers can result in significant improvements
in transmission quality [22, 23] but, like in the case of MLSE, their complexity is too high for
realistic implementation.

DBP1 gained momentum about a decade ago when the article by Ip and Kahn [24] was pub-
lished. The main idea behind DBP is to extend the MIMO equalizer by adding a nonlinear part,
so that DBP would invert the nonlinear and linear parts of Eq. 4 by applying the SSFM and
solving the propagation equation (4) backward at the RX. However, DBP is effective only when
combined with coherent detection and is deemed as being relatively complex for realistic im-
plementation. Several methods have been proposed to simplify the DBP concept [25–27], but
its complexity is still considered to be high.

NNs are intrinsically nonlinear and, therefore, match well with the type of effects we want to
mitigate. Moreover, NNs can still be employed even in the absence of link information or in
cases where the system configuration has changed as they obtain the required information
directly from the received signal. However, NNs can be quite complex, often even more complex
than DBP [28], which is the main limitation when employing them in practice. Thus, physical
implementation of RC presents itself as a promising solution to this problem.

3 Optical Implementation of Reservoir Computing
On the way of looking for a NN suitable for hardware implementation, the attraction has focused
on the foundation of echo state networks (ESN) [29] and liquid state machines (LSM) [30]. They
proved that a NN can work well without optimizing most of its weights, and they formed the
already mentioned computational framework called "Reservoir Computing", where the input
signals are mapped to a higher dimensional space using the dynamics of a set (so-called
“reservoir”) of multiple nonlinear nodes.

We will discuss the principle and operation of the RC with the ESN as a representative of the
framework. The architecture of an ESN which consists of an input layer, a reservoir layer and
an output layer, can be shown in Fig. 1. In ESN, a real M -dimension training input data can
be expressed as a vector uuu(n) ∈ RM at the discrete-time instant n, and a real K-dimension
desired output can be given by a vector yyy(n) ∈ RK . The ESN’s reservoir with N nodes has
its dynamics described through the vector xxx(n) ∈ RN which is updated at each time step as
following:

1Not to be confused with the backpropagation through the NN layers used for the training of NNs.
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Figure 1: ESN architecture

xxx(n+ 1) = (1− α)xxx(n) + αf(WWW inuuu(n+ 1) +WWWxxx(n)) (5)

where α ∈ (0; 1] is the leaking rate which represents the exponential decay of the reservoir and
emulates the physical implementation. The input is fed to the reservoir through a linear transfor-
mation whose coefficients are given by the input weight matrix WWW in. The interconnection matrix
WWW is the reservoir’s adjacency matrix and f(.) is the activation function of the nodes within the
reservoir. Both WWW in and WWW are randomly initialized and kept fixed during entirely the training
and test phases. The output layer of the ESN usually uses a linear activation transformation
onto the reservoir states:

yyy(n) =WWW outxxx(n) (6)

In a typical ESN training process, all the weights except the output weights WWW out are initialized
before the reservoir states are updated using Eq (5). The learning only performs on the output
layer for the linear relationship in Eq (6) that can be considered a simple linear regression prob-
lem. We thus do not need to perform the computationally expensive backpropagation algorithm
as we do in RNN. The ESN has been proven to give decent performance on supervised time-
dependent data tasks, such as nonlinear equalization [31], speech recognition, handwriting
recognition and financial forecasting [32]. The random initialization in the ESN allows the reser-
voir to be realized by physical dynamic systems, so its simplified design and reduced expensive
training requirement help enabling its potential in realistic implementation.

Many efforts have been made on optical realization of RC although the first designs were in-
troduced last decade. We can classify these previous works in two types based on how they
organize the internal nodes within the reservoir. The first one is called spatially distributed
reservoir systems where their topologies follow the conventional neural connections of multiple
photonic elements which play roles as neural nodes. The other type is regarded to time-delay
reservoir systems where the internal nodes are virtually created by utilizing a single nonlinear
node coupled with a feedback loop.

3.1 Reservoir with multiple photonic elements

The first system is built based on a network of SOAs on chip [33], [34] where the nonlinear char-
acteristics of a SOA is exploited to resemble the hyperbolic tangent (tanh) activation function.
The system where SOAs are connected in a waterfall topology is tested through a numerical
modelling, and its performance even shows a better result in some tasks than the traditional
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tanh-based reservoir. Having had encouraging results on numerical simulation, further efforts
are made to create a first photonic RC [35]. However, these SOA-based approaches have a
same issue in power efficiency due to exploiting the nonlinear regime of SOA characteristics
and limited processing time due to carrier life time. To overcome these limitations of a SOA, a
design of reservoir with only passive photonic components, namely waveguides, splitters, and
combiners, is developed [36]. This reservoir is energy efficient but totally linear, and the nonlin-
earity is only introduced at the readout layer where a photodiode converts complex amplitudes
into electrical power levels through a quadratic relationship. It is thus still an optoelectronic sys-
tem, and the goal about an all-optical RC could not be achieved. The advantage of this system
is broadband due to the presence of passive elements, while its bulky size as scaling out to
more nodes and the capability to extracting the reservoir nodes’ output in parallel.

3.2 Reservoir with a single photonic element

The original idea of time delay reservoir started from a concept of a simplified reservoir topology
where internal nodes of an ESN are connected in a circle [37]. It showed that an ESN with a
simple circular topology can have a similar performance compared to other conventional ESNs.
Leveraging that, a concept of using a single nonlinear node with a feedback loop resembling
of an ESN with circular topology is introduced [38], potentially paves the way for the develop-
ment of the time-delay reservoir system. Time delay systems have some advantages over the
spatially distributed systems that are capability to introduce a high dimension with many nodes
while easing the complexity in hardware implementation.

3.2.1 Mach-Zehnder-based reservoir

In this setup, a Mach-Zehnder modulator (MZM) does not only play a role of modulating the
incoming optical signal but also works as a nonlinear device (MZM has a squared-sin trans-
fer function) for this time-delay setup [39] [40]. The MZM output then goes through a single
mode fibre (SMF) before being detected by a photodetector (PD). A portion of the PD output
is extracted to detect internal states within the reservoir, while the other is merged with the
input data to become the modulating signal for the MZM and close the feedback loop. The
system is then tested for various tasks of speech recognition, time series prediction, nonlinear
equalization.

An autonomous version of this RC can be done by using a field-programmable gate array
(FPGA) where the output weights are trained online [41] . Because FPGA is a digital elec-
tronic hardware, there should be some digital-to-analog and analog-to-digital conversions in
the process.

3.2.2 Semiconductor optical amplifier-based reservoir

Building an all-optical RC has some advantages: avoiding back and forth conversions between
electronic and optical domains because these are limited by noise and operating bandwidth.
An all-optical RC can directly interface with the output of optical communication for nonlinear
equalization. The first scheme is a time-delay system based on SOA whose saturation gain
effect can be exploited for the reservoir nonlinearity [42] . The SOA is a preferred choice due
to its compactness and ability to compensate for losses within the delay loop. The isolator is
used to avoid any unnecessary backward reflection from the SOA, and the optical filter cancels
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out any out-of-band noise from the SOA output. Two optical attenuators control the strengths of
input and feedback signals fed to the reservoir in the next circles. The reservoir interconnections
in this case can be mimicked by a desynchronization between the masking process and the
feedback loop length.

3.2.3 Injection locked laser-based reservoir

The reservoir, in this scheme, consists of a semiconductor laser, an optical circulator which
directs the light from the loop to the injected laser and back again to the loop and a polarization
controller [43]. The nonlinearity is introduced by the semiconductor laser with feedback, and
its high accuracy performance is tested on spoken digit recognition and chaotic time series
prediction tasks and the processing speed can be at GBytes/s.

3.2.4 Fibre-based reservoir

A proposed fibre-optic RC, so-called fibre echo state network analogue (FESNA), which ex-
ploits the nonlinearity from a nonlinear optical loop mirror (NOLM), can unlock the operational
bandwidth over 100 GHz and enable dual-quadrature processing feature [44]. In a step of in-
creasing the process speed, a modified version, dispersion-managed FESNA (DM-FESNA),
uses dispersion effect for weight mixing instead of using electrical elements [45].

The previous works focus on the physical implementation of the reservoir, so the input and
output layers are supposed to be done offline. Therefore, the input and output weights should
also be implemented in physical hardware to fully implement a RC [46]. This kind of computer
can increase the energy efficiency as well as accelerates the processing speed. At the input
layer, the input weights (or masks) are temporal multiplexed to multiply with the input signal.
The input masks are thus fed to the RF port of the second MZM whose input port is injected
with the input data. An optical attenuator monitors the masked input’s strength as a realization
of the input scaling parameter. However, due to the technical limitation of arbitrary waveform
generator (AWG), this approach cannot introduce high dimension to the random masks and
further efforts may be needed to resolve this issue. At the output layer, 30 percent of the
reservoir output will detected by a PD for offline training which results in an optimal output
weight matrix. The other 70 will go to a dual-output MZM driven by the newly learned output
weight matrix. Its two outputs are then detected by two balanced photodiodes before filtered by
a low-pass RLC filter.

4 Photonic reservoir computing for optical commu-
nications

Many RC-based designs listed in Section 2 have been used for the optical channel equalization
tasks, and we will discuss about some notable works in this section.

An injection locked laser-based reservoir with 66 virtual nodes with feedback loop length of 66
ns was used for transmission data recovery of pulse-amplitude modulation (PAM) signals [47]
where two transmission scenarios were tested: short reach network with 50 km of SMF at
the speed of 25 Gb/s, and long haul network with 4000 km at 10 Gb/s. The reservoir-based
equalizer was optimized by considering various window lengths of neighboring symbols, and
it achieved the bit error rate (BER) performance more than one order of magnitude compared
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to the linear classifier in both scenarios. The first scenario was also tested for the MZM-based
reservoir scheme which returned even a slightly better BER [48]. It means the MZM-based
scheme has a better computational capacity, but the injection locked laser-based scheme has
a better reservoir bandwidth exploitation thanks to inertia node coupling. The same injection
locked laser-based equalizer with 32 virtual nodes for transmission of PAM signals with 4 levels
(PAM-4) were tested for two scenarios: 27 km at 56 Gb/s and 5.5km at 112 Gb/s [49]. The nu-
merical results showed that the systems can maintain the BER under the hard-decision forward
error correction (HD-FEC) threshold, while the linear classifier failed to do so. Experimental re-
sults verified the BER performance, but with slightly shorter distances of 21 km and 4.6 km
respectively. A scheme with bandwidth enhancement was developed to enable the node spac-
ing as small as 12 ps, consequently allowed us to use 80 virtual nodes with feedback loop delay
of 0.96 ns [50]. Its performance on the signal recovery task for quadrature phase shift keying
(QPSK) transmission of 180 km at 56 Gb/s returned a BER of around 10−3.

A fiber-based reservoir, so-called fiber echo state network analogue (FESNA), was tested for
the dual-quadrature signal recovery task [44]. The system in the test scenario was multi-
level quadrature amplitude modulation (m-QAM) signal transmission of 100 km of SMF at 30
GBaud/s. The results showed one order of magnitude advantage over the linear equalizer in
terms of BER for 64-QAM and 256-QAM cases. An all-optical version of FESNA, which can
avoid electrical components for better operation bandwidth, was developed by adopting the dis-
persion compensating fiber (DCF) [45]. The new scheme, which is named dispersion-managed
FESNA (DM-FESNA), showed 2 dB and 3 dB gain for 64-QAM and 256-QAM respectively at the
BER level of 10−3. The test scenario was then expanded to multi-channel transmission, namely
5 wavelength-division multiplexing (WDM) channels of 64-QAM, resulted in 1.2 dB peak gain
over the linear equalizer [51].

An integrated photonic reservoir with swirl architecture connecting real nodes as 3x3 MMIs
was also tested for the nonlinear equalization task [52]. In detail, the reservoir has 32 nodes
connected in 4x8 configuration. Its result on the nonlinear mitigation task of 25 km PAM trans-
mission at 32 Gb/s outperformed the linear equalizer, maintained a BER level below forward
error correction (FEC) limit even with a high launched power up to 18 dBm.

In POST-DIGITAL project, ESR9 is working on the nonlinear equalization of 64-QAM signals
transmitted as single-sideband (SSB) signals [53]. The signals are direct detected and the
phase information is reconstructed using a Kramers Kronig (KK) receiver. For such a setup to
work, the power of the SSB subcarrier must be significantly higher than the power of the signal.
With such power, the fiber nonlinearities are strong and induce significant errors. In addition,
the transmitter’s modulator is also a nonlinear component which adds nonlinear distortion to
the signal. To perform nonlinear equalization optically using RC, a 16-node integrated photonic
reservoir is used. The reservoir is composed of 3-by-3 MMI’s and interconnecting waveguides,
making it a passive reservoir. The reservoir behavior is studied by adapting the length of the
waveguides and the signal injection locations, which allows informing the design decisions
for an optimum reservoir. They conclude that, for optimum behavior, the waveguide lengths
should induce a time delay equal to half the symbol period. The optimum signal injection
locations varied by the problem. The reservoir readout uses all 16 nodes to connect to complex
weights, which is then passed to the receiver. The KK receiver behaves as a nonlinear element
which elevates the reservoir performance due to this added nonlinearity in the readout. The
system is simulated for inter/intra data center deployments, where lengths of up to 100 km
are typical. VPI Photonics software is used to accurately model the transmitter and channel
impairments. Chromatic dispersion is compensated for optically prior to the reservoir to ensure
that the reservoir is targeted towards the compensation of nonlinear errors. The reservoir is
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simulated using Photontorch. A system schematic is shown below in Figure 2. ESR 9 will
carry out a secondment at Aston in 2023, during which the system will be used for non-linear
impairments mitigation in optical communication systems.

Figure 2: Schematic of simulated system deploying reservoir for nonlinear equalization and a Kramers-
Kronig receiver for direct detection.
QAM: Quadrature-Amplitude Modulated; SSB Tx: Single Sideband Transmitter; CDC: Chro-
matic Dispersion Compensation; Amp: Amplifier; KK Rx: Kramers-Kronig Receiver

The optimization of the readout weights happens in two parts. For the first part, the weights are
initialized by finding the linear solution which best approximates the target signal. Since this is
a linear solution, the target signal before the receiver is used (i.e. before the nonlinear element
is included in the solution). We term this Linear RC (L. RC). In the second part, the weights
are then optimized by backpropagating through the receiver which improves the performance
of the reservoir since the equalizer includes a nonlinear part now. We term this Nonlinear RC
(NL RC).

Simulation results seen in Figure 3 show how L. RC and NL. RC perform in terms of testing
BER over fiber lengths from 20 to 100 km. Additionally, a benchmark of a linear feed-forward
equalizer (FFE) in the optical domain is evaluated. The nonlinear reservoir outperforms the
benchmark and reduces the errors into a third on average.

Figure 3: Testing BER vs link length for Linear Reservoir (blue) where no external nonlinearity is present,
Nonlinear Reservoir (orange) where the KK receiver is leveraged as a nonlinear block, and an
optical Feed Forward Equalizer (green) for benchmarking [53].

ESR12 is working on a photonic implementation of RC based on frequency multiplexing whose
schematic is shown on Figure 4, where different neurons are encoded in the complex ampli-
tudes of the lines of a frequency comb. One of the benchmark task on which the network has
been successfully tested, both experimentally and in simulation [54], is the nonlinear channel
equalization problem based on the model proposed in [31]. Although these first results are pos-
itive, they are based on a simplified model of a nonlinearly channel. As next step, the system
performances will be evaluated on real world data.

ESR14 has been working on the characterization of the nonlinearities in a SMF with the ob-
jective of signal recovery after nonlinear distortion with a reservoir computing device. It is the
continuation of the work in [47] where they plan to have the optical reservoir directly performing
the data recovery task at the receiver without converting to electric domain. The work was
assisted by ESR13 when he was on his secondment.
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Figure 4: Photonic RC based on frequency multiplexing [54].
Black lines: electrical connections. Green lines: polarization maintaining optical fiber. L:
laser. AWG: Arbitrary Waveform Generator. MZ: Mach Zehnder modulator. PM1 and PM2:
Phase Modulators. EDFA: Erbium Doped Fiber Amplifier. A1 and A2: RF Amplifiers. C1 and
C2: Couplers. BPF: Band Pass Filter. PSF: Programmable Spectral Filter. PD1 and PD2:
Photodiodes.

A 50km telecommunication channel has been mounted in the nonlinear photonic lab at IFISC.
A 1550nm semiconductor laser was used to generate a continuous-wave signal and sent into
a 50km SMF. A 92GSa/s arbitrary waveform generator AWG was used to generate the electric
signal for modulation of the continuous wave through a MZM. In order to fit the requirement of
the MZM in terms of electrical power, a 20GHz RF amplifier was employed. Also, an erbium-
doped fiber amplifier (EDFA) was used at the fiber input to amplify the optical signal to maintain
enough power in such a long fiber. For detection at the channel end, a power detector was
employed coupled with an optical attenuator to stay below the burning threshold of the detector.
The detected electric signal was then sent to a 40GHz oscilloscope to analyze and collect
data.

The modulation scheme is chosen with either two or four levels of pulse amplitude modulation
(PAM and PAM4). The modulation scheme signal is uploaded into the AWG. It is then applied
to the optical signal generated from a high-power laser via the intensity modulator. The EDFA
amplifies the modulated signal; a photodetector then detects the filtered output signal before
being recorded by the oscilloscope. We aim to reproduce conditions where the optical power
is sufficiently high enough to trigger enough non-linearities along the fiber. These high launch
power conditions can be interesting in applications such as intra-datacenter transmission to
avoid amplification at the receiver and keep only passive components.

To characterize the amount of distortion inside the fiber, a straightforward way is to compute
the correlation of the time series. We expect only linear distortion at low launched power, e.g.,
chromatic dispersion. By increasing the launched power, non-linear distortion occurs; it is in-
teresting to measure the correlation between time series that suffered only from dispersion and
transmission that suffered from dispersion and non-linearity. An other way to characterize the
non-linearity was a straightforward comparison of the timeseries. It is expected that the peaks
of the signal will be reduced and the power . The ultimate test, has been to use the data ob-
tained for a signal recovery task, comparing two approaches. A non-linear approach consisting
of using a simulated time-delay reservoir computing, and a linear using only the reservoir com-
puter’s output stage, i.e., linear regression. We can compare these two approaches for high
power transmission e.g., nonlinearly distorted signal and low power transmission e.g., for linear
distortion, in the expectation that the in the first case the non-linear approach should give a
better result than the linear one, and in the latter case it should give similar results.
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Many parameters have been tuned to compare the different metrics described previously, such
as the symbol rate, the launched power, the amplifier gain, the bias current of the laser, the
bias voltage of the MZM and the filter of the oscilloscope. After comparison of the metrics
described previously, by tuning the different parameters, two key parameters have been shown
to be needed for triggering non-linearity in the fiber; modulation speed has to be high enough
typically 28 GBaud, as well as the launched power in the fiber typically above 11 dBm. For
these typical parameters a significant decrease in the correlation between the low launched
power and the high launched power. Furthermore, the bit recovery task for PAM4 modulation,
showed a reduction in the BER from of 3 orders of magnitude between the nonlinear recovery
( 10−5) and the linear recovery ( 10−3) after optimization of the MZM bias voltage.
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