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EXECUTIVE SUMMARY 
This deliverable of the POST-DIGITAL project describes the evaluation of the analogue computing devices 
developed in the consortium. The degree of evolution of the different hardware approaches implemented by 
the POST-DIGITAL partners is remarkable. Using photonic substrates, designs based on spatial, temporal or 
frequency multiplexing have been developed, characterised and evaluated. In addition, this report includes a 
detailed account of the progress made in establishing general rules for benchmarking neuromorphic 
hardware. The progress of the ESRs is also documented in this deliverable.  
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1 INTRODUCTION 
The ESRs of the POST-DIGITAL ETN are investigating different hardware platforms and information processing 
strategies in the context of analogue computing. In the photonic domain, several approaches based on 
spatial, temporal or frequency multiplexing techniques have been successfully implemented and evaluated. 
The ESRs have also contributed to the field of neuromorphic computing by developing software tools to 
benchmark and evaluate different hardware platforms using a common language. 

The initial designs reported in Deliverable 2.1 were characterised in Deliverable 2.2. The current deliverable 
focuses on the evaluation of the hardware approaches considered promising by the POST-DIGITAL partners. 
The ESRs have added the ability to benchmark analogue computing systems to their skill set. This report 
shows that the ESRs are at the forefront of post-digital computing. 

List of contributors (alphabetical order): Steven Abreu (ESR1, Groningen), Mirko Goldmann (ESR5, CSIC), 
Alessandro Lupo (ESR12, ULB), Enrico Picco (ESR4, ULB), Anas Skalli (ESR3, Femto-ST), Lucas Talandier (ESR14, 
CSIC). Document compiled by Miguel C. Soriano, IFISC (CSIC-UIB). 
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2 EVALUATION OF PHOTONIC- AND ELECTRONIC- BASED ANALOGUE 

COMPUTING DEVICES 
Photonic computing is increasingly reaching a high level of maturity, with competitive accuracies in machine 
learning benchmark tasks. In Section 2.1, we report on the evaluation of different implementations 
developed in the POST-DIGITAL consortium. In Section 2.2, we present a software approach to evaluate 
different neuromorphic computing platforms on a common basis. While the validation of this software has 
been performed on digital electronic systems, the transfer to analogue electronic systems is underway. 

2.1 PHOTONIC SYSTEMS 
As described in Deliverables 2.1 and 2.2, the different photonic designs follow complementary strategies that 
exploit multiplexing either in space (Section 2.1.1), in time (Section 2.1.2) or in frequency (Section 2.1.3).  

This deliverable covers the evaluation of a spatial multiplexing approach based on a large aperture laser, 
carried out by ESR3 and ESR5. In turn, ESR4 and ESR14 have made progress in the evaluation of two 
complementary temporal multiplexing information processing systems. Finally, ESR12 has evaluated the 
performance of a photonic system using frequency multiplexing for reservoir computing and extreme 
learning machines. 

2.1.1 Space multiplexing 
This section focuses on the evaluation of an artificial neural network-like system implemented in optics. The 
optical system is based on a large area vertical cavity surface emitting laser (LA-VCSEL), as it can be seen later 
in Figure 1. The design and characterization of this spatially multiplexed approach has been presented in 
previous deliverables. A performance evaluation is reported here. In particular, ESR3 worked in close 
collaboration with ESR5 to improve the performance of this photonic neural network (PNN) through a 
detailed numerical and experimental analysis. 

The ESRs first performed a ceiling analysis on a digitally simulated neural network (NN) of a representative 
size (100 neurons) to identify which parts of the NN most improve the system's performance when optimized 
in an image classification task. The well-known MNIST dataset was used to perform this analysis, as it can 
later be used in the PNN for comparison purposes.  The main results of the ceiling analysis are summarized in 
Table 1. Restricting the output weights Wout of the neural network to be positive only, while training it and 
keeping the input weights random, yields the worst performance with a classification accuracy of 60%. 
Allowing Wout to take negative values dramatically improves the performance to 87%. Furthermore, training 
the input weights Win in addition to the output weights yields another significant jump in performance to 97% 
accuracy. 

Table 1. Numerical evaluation of the influence of the weight training on the system performance. 

System Performance 

NN 100 training Wout positive only 60% 

NN 100 training Wout positive and negative 87% 

NN 100 training Wout and Win 97% 
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These conclusions may seem trivial in the context of conventional machine learning, but they have profound 
consequences when it comes to building a setup that uses a physical system, i.e., the LA-VCSEL, as the central 
piece of an optical neural network. First, while negative weights are critical for accuracy, they are not trivial to 
implement optically. Second, implementing trainable input weights is challenging because one cannot rely on 
error backpropagation to train them, as is done in digitally simulated neural networks. Therefore, a model-
free or "black-box" optimization algorithm that is sufficiently efficient is required.  Here, we use an 
evolutionary strategy that updates the weights based on multiple samples of the network's classification 
error within a certain (potentially small) variation of the weights. In particular, we use the Parameter 
Exploring Policy Gradient (PEPG) algorithm for the following reasons: 

1. The algorithm is model-free and therefore does not require any knowledge of the PNN to 
train the input weights. 

2. The PNN with its high throughput (15 kHz) allows fast sampling of the error for different 
weights.  

3. Updating the weights requires minimal computation and scales linearly with the number of 
parameters. 

4. The algorithm works even with limited resolution of the weights to be trained. 

With these considerations in mind, the ESRs designed an improved version of the setup in which all weights in 
the PNN can be trained, resulting in a highly tunable network that can begin to handle real data sets and 
move beyond the basic proof of concept. 

The updated experimental setup looks as follows: Input images u displayed on a digital micromirror device 
(DMDa) are passed through a phase mask displayed on a spatial light modulator (SLM), which encodes the 
trainable input weights Win. The phase modulated input is injected onto the LA-VCSEL through a multimode 
fiber (MMF) which passively implements a random linear mixing Wrand. The VCSEL then transforms the 
injected information non-linearly yielding the perturbed mode profile x yielding up to 350 fully parallel 
neurons. The final part of the PNN is its output layer. The VCSEL’s surface is imaged onto DMDb, whose pixels 
can flip between two positions, for one of which it reflects light onto the photodetector (DET), giving us 
Boolean output weights Wout. Here, up to 5 times optical magnification of the LA-VCSEL is implemented to 
increase the imaged size of the LA-VCSEL on the DMDb and accordingly the amount of available Boolean 
weights is increased as well.  Finally, the output of the PNN y is the optical power detected at DET. Negative 
output weights are achieved via recording the output of the PNN twice and implementing an electronic 
subtraction. As described above, Wout and Win are trained via the PEPG evolutionary optimization based on 
multiple samplings of the error using slightly perturbed weights.  Ideally, a second SLM should be used at the 
output to provide higher resolution and to increase classification accuracy further. The described 
experimental scheme is shown in Fig. 1. 

Reservoir Input Output 
𝑾𝑾out 

DET 

𝒙𝒙  

MMF DMDb DMDa LA-VCSEL 

u y 𝑾𝑾rand 𝑾𝑾in 

SLM Input 
 

Figure 1  Working principle of the VCSEL-based experimental photonic neural network. 
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Figure 2 shows preliminary classification performance for the MNIST task using Boolean weights (BOOL), and 
trinary weights (3 values; -1, 0, +1). Trinary weights have a significant positive impact on performance, 
reaching an average performance of 90%. In addition, a long-term stability analysis was conducted, over a 
period of 10 hours, showing little to no degradation in performance or drift. Moreover, the average cross 
correlation between different outputs over the 10 hours was 98%. 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, the VCSEL-based PNN shows promising initial results on the MNIST dataset, while achieving 
classification at a bandwidth of 15 kHz. This approach is highly relevant, fully parallel and scalable both in 
terms of network size and depth, as it provides a clear way to use VCSELs in a deep PNN configuration. Finally, 
the inference bandwidth is also highly scalable due to the fast VCSEL response time without a significant 
increase in power consumption. ESR3 and ESR5 will continue their collaboration with the goal of fully 
exploiting the computational capabilities of the setup by training the input weights of the hardware. 

 

2.1.2 Time multiplexing 
In this section, the evaluation of delay-based photonic and opto-electronic approaches for reservoir 
computing and extreme learning machines is reported. This entails the work of ESR4 and ESR14, respectively. 

2.1.2.1 Delay-based reservoir computing based on a semiconductor laser subject to optical feedback 
ESR14, in collaboration with other members of the Nonlinear Photonics team at IFISC, has implemented and 
evaluated an experimental phase-encoded photonic time-delay reservoir computer. The physical 
implementation was guided by the results of numerical simulations, which consistently showed a significant 
performance improvement for various tasks when phase encoding is incorporated. This improvement was 
subsequently confirmed by the experimental evaluation. 

The experimental apparatus was an advanced version of a previously used setup, now augmented with a phase 
modulator (Figure 3). The specific timing of the input modulation in the experiment is as follows: 

• The signal underwent a modulation at a frequency of 17.0667GHz, serving as the masking rate. 

Figure 2 Experimental evaluation of the photonic neural network for the MNIST dataset. 
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• The node separation time of the virtual nodes was recorded at 58.6ps. 

The feedback loop had a duration of 24.5ns, representing the system's delay 

 

Two primary objectives were pursued for the evaluation of this setup: 

1. One-Step Ahead Chaotic Prediction: The main goal was to demonstrate that the use of phase 
modulation alone can improve performance on a one-step-ahead chaotic prediction task compared to 
intensity modulation alone. The conclusive results of the experiment corroborated the numerical 
simulations, showing a halving of the NMSE when using phase as opposed to intensity. 

2. Signal Recovery Post Fiber Impairments: The second objective was to test another hypothesis derived 
from the numerical simulations. This hypothesis was that using the full information of the electric field 
(both amplitude and phase) would aid signal recovery. The experiment involved transmitting a PAM4-
modulated signal over 50 km of single-mode fibre at a high launch power of 10 dBm. To test this, both 
phase and intensity modulation were modulated simultaneously. The intensity modulation was 
performed with the received amplitude, delayed and masked, and the phase modulation was 
performed with the delayed received phase. The result of this experiment showed an improvement of 
almost an order of magnitude by parameter optimisation. 

 

2.1.2.2 Opto-electronic reservoir computing based on a delay loop 
The experimental system reported by ESR4 in this section is a time-delayed reservoir computer [1], 
implemented with an optoelectronic system similar to [2]. The design and characterization of this approach 
has been presented in previous deliverables, see Fig. 4 for a schematic of the experimental setup. The analog 
reservoir states are represented by the light intensity in an optical fiber, while digital electronic hardware is 
used to interface the optical signal. The speed bottleneck in these optoelectronic systems is often the slower 
electronics, which affects the reservoir computer especially when processing complex data structures such as 
images or video. For this reason, ESR4 has improved the electronic interface and increased the speed of the 
entire system by two orders of magnitude. This makes it possible to achieve real-time data processing even 
when studying large data sets or more complex RC architectures. The evaluation of the system on two 
practical data sets is reported here. 

Figure 3  Experimental photonic setup. ISO: optical isolator, RFA: RF amplifier, MZM: Mach-Zehnder intensity modulator, PM: 
Phase modulator, AWG: arbitrary waveform generator, ATT: optical attenuator, CIR: optical circulator, SOA: semiconductor 

optical amplifier, OF: optical filter, PD: photoreceiver, Osc: Real-time oscilloscope 
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Figure 4 Scheme of the experimental setup. The optical and electronic components are shown in red and green, respectively. The 
reservoir layer consists of an incoherent light source, a Mach-Zehnder intensity modulator (MZM), an optical attenuator (Att), an 

approximately 1.7-km fibre spool, a feedback photodiode (PD) and a resistive combiner. 

First, ESR4 and collaborators tested the optoelectronic setup on human action recognition in videos [3]. This 
dataset consists of recordings of 25 actors performing 6 different actions (walking, jogging, running, boxing, 
hand waving, and hand clapping). The results are shown in Fig. 5(a). With 600 nodes, a classification accuracy 
comparable to state-of-the-art algorithms with network sizes ranging from thousands to hundreds of millions 
of neurons is reported. At the same time, the processing speed of the system exceeds the typical video frame 
rate of 25 fps by a factor of 6, providing a platform for real-time multi-channel video processing. A more 
comprehensive comparison of this work with other machine learning platforms, including a full list of 
references, can be found in [3]. 

Second, ESR4 evaluated the performance of the setup on human speech processing, the spoken digit 
recognition task. In addition to standard RC, ESR4 tested another architecture, called Deep Reservoir 
Computing (DRC), in which different reservoirs are stacked in series to increase the richness of the reservoir 
dynamics. The results [4], shown in Fig. 5(b), experimentally confirm the superiority of DRC over standard RC. 
Moreover, the system can classify speech in real time even when multiple reservoir layers are concatenated 
in series. Similar results on DRC have been obtained by the ESR4 group using a photonic reservoir computer 
based on frequency multiplexing [5]. 

Overall, this time-multiplexed optoelectronic system is an important step towards the development of real-
time signal processing with photonic neuromorphic hardware. 

      

               (a)                                                                            (b) 

Figure 5 Experimental results for the optoelectronic reservoir computer. Figure (a) shows classification accuracy on the human 
action recognition task, comparing ESR4 results to some other previous work on the KTH dataset.  Figure (b) shows the Word 
Error Rate (WER) in the classification of spoken digits when noise is present in the input audio signals (SNR = 3 dB), using both 

standard, “shallow”, RC (black) and deep RC (red). The deep RC consists of 2 to 6 reservoirs of size 100 used sequentially. 
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2.1.3 Frequency multiplexing 
ESR12’s work focuses on frequency-multiplexing schemes for optical neuromorphic computing, including 
both frequency-multiplexing reservoir computers (FM-RC) and frequency-multiplexing extreme learning 
machines (FM-ELM). Both schemes have been successfully demonstrated in fiber-based experimental setups 
[6, 7]. The working principle of these computers consists of encoding different neuron signals in the lines of a 
frequency comb. Neuron signals are mixed by applying a periodic phase modulation to the radiation, which 
induces frequency-domain interference between comb lines. 

One of the strengths of frequency-multiplexing is the high parallelization capability, which allows the 
propagation of multiple signals on the same channel by employing different wavelengths. For example, 
parallel computations are achievable by employing multiple non-interfering frequency combs. This concept 
has been demonstrated both for FM-ELMs and FM-RCs in fiber-based experiments [8, 5]. Parallel RCs running 
on the same substrate can execute independent tasks or be combined to form deep reservoir computer 
schemes (deep-RC). 

 

Figure 6 Experimental setup for the frequency-multiplexing deep-RC. Optical connections are in blue, electrical connections in red. 
MZM: Lithium Niobate Mach-Zehnder modulator; AWG: arbitrary waveform generator; C: fiber couplers; EDFA: Erbium-doped-fiber 
amplifier; PM: phase modulator; RF source: radio frequency source at frequency Ω; RF AMP: radio frequency amplifiers; PSF: 
programmable spectral filter; PD: photodiode; ES: electric switch. 

In [5] ESR12 and collaborators reported the benchmark of a frequency-multiplexing (deep-)RC based on the 
experimental scheme represented in Figure 6. Two frequency combs propagate in the setup, generated by 
applying a radiofrequency (20 GHz) periodic phase modulation (PM 1) to two C-band laser sources (CW 
source 1 and 2). Both light sources are modulated by a Mach-Zehnder modulator (MZM 1 and 2). MZM 1 is 
driven by an arbitrary waveform generator (AWG 1), while MZM 2 can be driven by AWG 2 or by a signal 
proportional to the power in the first comb, depending on the experimental configuration (position of the 
electric switch ES). In the first configuration (AWG 2 driving MZM 2), two independent signals propagate in 
the setup without interaction, realizing two parallel computations; in the second configuration (PD 2 driving 
MZM 2), the second frequency comb is modulated by a signal proportional to the power in the first frequency 
comb, realizing a deep-RC. Independently of the configuration, both frequency combs propagate without 
interacting in a fiber loop, experiencing phase modulation (PM 2) for each roundtrip. Frequency comb lines 
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encode neuron signals, which are mixed by the phase modulation. Only the neuron signals from the same 
comb are mixed, without crosstalk between frequency combs. For each roundtrip, a part of the radiation is 
extracted from the loop, entering a readout circuit. The readout circuit is based on a two-channel 
programmable spectral filter (PSF) with two roles. First, independently of the position of the switch ES, the 
first channel of PSF is employed with the photodiode PD 1 to measure reservoir states. Second, when the 
switch ES is positioned in the deep-RC configuration, the second channel of PSF applies an attenuation mask 
to the comb encoding the state of the first reservoir, which is then measured by PD 2 and employed as driving 
signal for MZM 2, thus driving the second reservoir. In our configuration, each reservoir has 20 neurons. 

 

Figure 7 The three tested configurations for the deep-RC system. 

We tested the system in the three configurations, as reported in Figure 7: 

(a) shallow-RC, consisting of executing a traditional RC on a single frequency comb, while unrelated 
computation is performed on the other comb. 

(b) parallel-RC, consisting of executing the same computation on two independent RCs (receiving the 
same input signal) and connecting the output layers. 

(c) deep-RC, consisting of driving the first RC with the input signal and the second RC with a signal 
proportional to the power in the first comb. 

When testing the deep-RC configuration, we experimented with two methods to tune the attenuation mask 
applied by PSF to the first frequency comb before it is transmitted to PD 2: as first method we applied a 
uniform attenuation mask, sweeping the attenuation α in search for the best performance, as second method 
we employed an evolutive optimization algorithm (CMA-ES). 

Two benchmark tasks have been executed: a nonlinear channel equalization and a chaotic time-series 
prediction. Results are reported in Figure 8 and more detailed in [5]. First, we note that, as expected, deep-RC 
performs better than parallel-RC, which, in turn, performs better than shallow-RC. This proves that increasing 
the number of neurons by creating a deep configuration performs better than increasing the number of 
neurons by merging two reservoirs in a parallel fashion.  Second, concerning the optimization of the 
connection mask between the two deep-RC layers, we note that the two tested techniques perform 
comparably, although one (sweeping α) is sensibly simpler than the other (CMA-ES). We identified two 
reasons for this behavior. First, the CMA-ES algorithm could get stuck in local minima. Second, the search of 
the optimal set of weights could be affected negatively by slow drifts in the operating conditions of the deep-
RC.  
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Figure 8 Results of the two benchmarks on the four tested operating conditions. SER: symbol error rate; SNR signal-to-noise ratio; 
NMSE: normalized mean square error. In the chaotic timeseries prediction task positive shifts consist of predicting the future, negative 
shifts consist of remembering the past, and zero shift consists of reproducing the current input. 

In summary, developing deep architectures for neuromorphic photonic computing is a highly promising 
avenue for increasing the system performance. Here we have demonstrated a scheme where the connection 
between layers is performed in the analog domain and does not require analog-to-digital or digital-to-analog 
converters. 

2.2 SOFTWARE FOR THE EVALUATION OF NEUROMORPHIC COMPUTING PLATFORMS 
This year, ESR 1 participated in the yearly 3-week Telluride workshop on neuromorphic computing, where he 
has started a new collaborative project that contributes both to formal ideas and the evaluation of 
neuromorphic computing implementations. The goal of ESR1 and collaborators is to develop an intermediate 
representation for neuromorphic computing platforms, namely the neuromorphic intermediate 
representation (NIR). Such an intermediate representation will allow easier conversion between different 
neuromorphic platforms, and thus also easier and more comprehensive evaluation and benchmarking.  

Currently, NIR supports digital electronic neuromorphic platforms, as the collaborators of ESR 1 on this 
project are mainly working on these platforms. NIR already supports two of the largest digital electronic 
neuromorphic platforms: the SpiNNaker2 platform and Intel’s Loihi 2 chip. Furthermore, NIR also provides 
support for the digital hardware platforms from SynSense, namely the Xylo chip for auditory processing and 
the Speck chip for vision processing. Additionally, NIR supports many of the most popular spiking neural 
network (SNN) simulators and training frameworks, including snnTorch, Norse, lava-dl, Nengo, Rockpool, and 
Sinabs.  

NIR is an open-source project that is freely available on GitHub via: https://github.com/neuromorphs/NIR.  

Technical description 

Technically, NIR uses a dataflow graph to represent computations in an abstract and hardware-agnostic way. 
The dataflow graph consists of compute nodes, which are described by ordinary differential equations (ODEs) 
or discrete input-output functions. These compute nodes are connected through edges which represent data 
transfer without any transformation. All nodes can be vectorized, such that their input is not scalar but 
tensors of arbitrary shape. This enables NIR to compactly represent large neural networks with commonly 
used architectures. Table 2 shows a list of currently supported NIR primitives.  

https://github.com/neuromorphs/NIR
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Table 2: NIR primitives with corresponding parameters and computational models. Note that the input is denoted by x and the output 
is denoted by y. 

Node Parameters Computational model 
Input Input shape - 
Output Output shape - 
Affine 𝑊𝑊, 𝑏𝑏 𝑦𝑦 = 𝑊𝑊𝑊𝑊 + 𝑏𝑏 
Delay τ 𝑦𝑦 = 𝑊𝑊(𝑡𝑡 − τ) 
Integrator 𝑅𝑅 �̇�𝑊 = 𝑅𝑅𝑊𝑊 
Leaky integrator τ,𝑅𝑅 τ�̇�𝑦 = −𝑦𝑦 + 𝑅𝑅𝑊𝑊 
Threshold θ 𝑦𝑦 = 1 𝑖𝑖𝑖𝑖 𝑊𝑊 >  θ 

𝑦𝑦 = 0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 
Scale 𝑒𝑒 𝑦𝑦 = 𝑒𝑒𝑊𝑊 

 

Some primitives, especially those representing neurons, are represented in differential form. The reason for 
this is twofold: firstly, to make NIR compatible with analog computing implementations where hardware is 
modelled using continuous-time ODEs, and secondly, to model computations in digital hardware on a coarse-
grained level where details of the discretization procedure are abstracted away. It can be argued that digital 
neuromorphic hardware tries to approximate the real, continuous-time equations of spiking neuron models 
and thus it is justified to use these equations in our intermediate representation. 

It is further noted that computational primitives are composable. As such, it is possible to use the “Leaky 
Integrator” and “Threshold” nodes to create a “Leaky integrate-and-fire” neuron model, see Figure 9. 

 

 

Figure 9: Schematic of how to compose new NIR primitives from existing ones. Here, a LIF neuron model is created from the primitives 
shown in Table 2. 

 

Academic output 

Together with another researcher from KTH Stockholm, ESR 1 is leading the effort of a journal paper that is to 
be submitted later this year. In this paper, the goal is to present NIR to the digital neuromorphic hardware 
community and demonstrate convincingly that NIR provides an unprecedented level of interoperability 
between neuromorphic simulators, design tools, and digital hardware platforms - while also arguing for the 
generality of NIR and paving the way for future work on expanding NIR.  
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The interoperability of NIR with respect to neuromorphic hardware and simulators is demonstrated with 
three exemplary NIR graphs that are run across different hardware and software platforms using NIR as a 
conversion tool between platforms. These NIR graphs include: 

1. A single leaky-integrate-and-fire (LIF) neuron, whose dynamics are shown to be equivalent (subject to 
some small error tolerance) across platforms with respect to the neurons’ firing rates and inter-spike 
interval (ISI).  

2. A reservoir-like recurrent neural network of LIF neurons that is used to solve an auditory or tactile 
perception classification task (either the Spiking Heidelberg Digit task, or the Braille letter reading 
task). It is shown that the performance is equivalent, in terms of task classification accuracy as well as 
the network’s prediction confusion matrix.  

3. A convolutional neural network of Integrate-and-Fire (I&F) neurons that is used to solve a video 
gesture recognition task (the IBM gesture recognition dataset using an event-based camera). Similar 
to point 2 above), it is shown that the performance is equivalent, in terms of task classification 
accuracy as well as the network’s prediction confusion matrix.  

 

Once this initial paper on NIR is published, ESR 1 will expand the effort of this intermediate representation to 
analog and photonic platforms. A first priority is to make NIR useful to collaborators within the Post-Digital 
consortium. Thereafter, collaborations in the wider neuromorphic and physical computing community will be 
sought. Some such collaborations have already been initiated when ESR 1 presented NIR at the “frontiers of 
neuromorphic computing” workshop at the Max Planck Institute for the Science of Light in Erlangen, 
Germany.  

In collaboration with Prof. Sadas Shankar at Stanford University, ESR 1 and a collaborator from KTH 
Stockholm will use NIR to demonstrate, theoretically and experimentally, the increased energy efficiency of 
computing systems whose underlying physics is more closely aligned to their computational workload, e.g., 
using analogue hardware to implement continuous-time neural networks.  
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