

POST-DIGITAL - European Training
Network
on Post-Digital Computing [GA860360]

Document Details

Title Deliverable 1.1 Report on critical gaps in existing formal methods to
capture computation in unconventional substrates

Deliverable number D1.1

Deliverable Type Report (public)

Deliverable title Report on critical gaps in existing formal methods to capture
computation in unconventional substrates

Work Package WP1- New concepts and theory

Description Report on critical gaps in existing formal methods to capture
computation in unconventional substrates

Deliverable due date 30/09/2021

Actual date of submission 19/10/2021

Lead beneficiary Groningen

Authors: ESR1 Steven Abreu, ESR2 Guillaume Pourcel

Co-authors: PI Herbert Jaeger, ESR7 Diego Arguello Ron, ESR10
Benedikt Vettelschoss

Version number V1.0

Status Final

Dissemination level

PU Public X

CO Confidential, only for members of the consortium (including Commission Services

GA 860360-POST-DIGITAL Deliverable D1.1

Project Details

Grant Agreement 860360

Project Acronym POST-DIGITAL

Project Title POST-DIGITAL - European Training Network on Post-Digital Computing

Call Identifier H2020-MSCA-ITN-2019

Project Website https://postdigital.astonphotonics.uk/

Start of the Project 1 April 2020

Project Duration 48 months

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 860360.

Deliverable D1.1 3 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Table of Contents

1. Introduction ... 4

2. Existing work .. 6
2.1 Existing approaches .. 6

2.2 Existing hardware .. 9

3. Selected Themes ... 9
3.1 Analog and Digital ... 9

3.2 Timescales ... 12

3.3 Stochasticity ... 14

3.4 Robustness .. 16

3.5 Programming .. 19

3.6 Information and representation in cognitive systems ... 36

3.7 Inspiration from the brain .. 39

3.8 Mathematical modeling: requirements and deficits .. 45

4. Conclusion .. 57

References .. 58

Deliverable D1.1 4 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

1 Introduction

The pervasiveness and power of digital computing can hardly be overstated; it has lead the way
into a new digital age and shaped our societies. The power of digital computing comes from a
rich and unified framework of interrelated theories that describe digital computation. This theo-
retical framework has served as a guiding light for hardware manufacturers, software designers,
and everyone in between - and their joint contributions have constructed the monumental tower
of digital computing.

But not all is well in digital computing. A number of issues and limitations have lead to the re-
investigation of the very foundations on which digital computing so firmly rests [Copeland et
al., 2016]. The exploding investment costs for microchip fabrication make it harder to further
downscale transistors, hinting at fundamental limits [Waldrop, 2016] and suggesting that future
progress may come from sources other than manufacturing and miniaturization, like computer
architecture [Hennessy and Patterson, 2019] or software development [Larus, 2009]. With this,
the clear hardware/software separation may cease to be tenable - ESR1 discusses this issue
in Section 3.5.

At the same time, an increasing diversity in computer hardware for specialized demands is
emerging, as evidenced by the GPU for graphics processing (and follow-up applications, like
training machine learning models), the FPGA for embedded devices and replacing the need
for ASICs in some cases, the TPU for Google’s machine learning purposes, and an increas-
ing number of more unconventional hardware systems - some of which are investigated and
developed in the Post-Digital consortium (cf. Deliverable 2.1). The price in efficiency that we
pay for the convenience of general-purpose computers, termed "Turing Tariff" [Edwards, 2021],
is growing too high. The result may be a new era of closer collaboration between hardware
and software research, leading to the co-development of hardware and software. This will likely
enable many new research ideas to flourish which have failed in the past because they were
incompatible with the hardware available. As an example, Hooker [2020] argues that deep
learning had to wait decades until the wide availability of a new computing device, the GPU, in
order to be widely accepted as a promising research direction. Unconventional computers may
enable us to go where present digital computing cannot take us.

In terms of theory, many alternative approaches to computing have emerged in past decades.
We use unconventional computing as an umbrella term for all such theories of computation.
Most notably, and of particular relevance to the Post-Digital consortium is neuromorphic com-
puting. Fueled by the deep learning revolution [LeCun et al., 2015] and the demonstrated
power of such cognitive-style computing [Silver et al., 2018], neuromorphic computing has re-
cently moved towards the spotlight of unconventional computing paradigms. With the ability to
break through the energy barrier that digital computing cannot penetrate, neuromorphic com-
puting technology promises to deliver brain-like energy efficiency [Boahen, 2017, Sarpeshkar,
1998]. Of course, taking inspiration from the brain to build computers is difficult if we do not
understand how and what computation takes place in the brain. ESR2 outlines this issue in
Section 3.7.

However, it may be argued that taking inspiration from the brain to build next-generation com-
puters has its limits. We are not building computers from "wet" materials like neuronal tissues.
Instead, we are already working on exploiting physical effects that cannot occur in biological
tissues, like the massive parallelism and unmatched speed of photonics that is exploited by our
partners in the Post-Digital consortium. So perhaps what we should learn from the brain is that
it exploits the computational capabilities of its underlying physical substrate. If we apply this
lesson to the materials in which we intend to build next-generation computers, this leads us

Deliverable D1.1 5 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

to considerably widen our research agenda and investigate how physical phenomena in what-
ever material can be harnessed for computation [Jaeger, 2021]. This is not a new idea, but
has already been investigated for decades under terms like "physical computing", "in-materio
computing", and many more (cf. Section 2.1).

As we venture out to work with unconventional computers exploiting novel material effects which
deviate more and more from the digital computing paradigm, the lack of support from a guiding
theoretical pillar manifests in many ways. It is precisely this lack of theoretical support and
guidance in the development of unconventional computers which motivates the present report.
Jaeger [2021] describes how the theory of digital computing has guided the development of the
field:

The formal theory of DC has crystallized into canonical textbooks which are taught
to computer science students worldwide in essentially always the same coverage
and terminology. I find it important to point out that the powers of the DC paradigm
do not emerge from a single formal theory or model. Besides the theory of Turing
machines, which could be mistaken as the theory of DC, there are other formalisms,
models and theories that are just as essential for the practical manifestations of DC.
They include the theories of automata, formal grammars and languages, program-
ming languages and compiler design, computability and complexity theory, Boolean
and first-order logic, other logics and metalogical frameworks. These theories, mod-
els and formalisms are tightly and transparently interrelated. Their totality can be
likened to an orchestra which instruments all professional DC activities from device
engineering to microchip fabrication technologies, from circuit design to computer
architectures and communication networks, from programming language develop-
ment to human–computer interfacing, from databases to internet services, from be-
ginners’ programming exercises to software engineering and use-case specification
frameworks and all the rest.

In this report, we aim to give an overview of the existing theories that can be used to capture
computation in unconventional substrates. Our main goal is to depict the current landscape of
unconventional computing research and to point the most promising directions to be pursued
by the theoretically oriented ESRs in the Post-Digital project. We begin by giving a brief (and
necessarily incomplete) overview of existing approaches in Section 2.1 to extend our current
notion of "computing". For completeness, we also give a (very) brief overview of some of the
existing hardware that is mentioned in this report in Section 2.2, but the reader is referred to
the Post-Digital deliverable D2.1 for a more detailed report on the hardware systems that are
used and developed in the Post-Digital consortium.

The main part of the report is organized in different themes which we have selected to reflect
some of the areas in which critical gaps in our theoretical understanding are evident. The
fragmented, yet also overlapping, organization of our report is a reflection of the similarly frag-
mented, overlapping nature of the theories which are needed to drive the understanding and
development of the field. For each of the selected themes, we give an overview of the problems
and conclude each section by outlining some of the critical gaps that have been identified.

At this point it may be pointed out that the main authors of this deliverable are ESR1 and
ESR2. Their research is directly related to the content of this deliverable and describes the
environment in which they work, as well as the environment in which the visiting ESRs (3,
5, 8, 9, and 10) will be embedded for their secondments. ESR1 is working on developing
new concepts, formalisms and methods for programming unconventional computers and will
be working on solving real-world relevant learning tasks on the DYNAP-SE2 to exploit a well

Deliverable D1.1 6 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

characterized set of nonlinear phenomena of this analog microprocessor. Naturally, he wrote
Section 3.5 on programming, as well as Sections 2.2, 3.1, and contributed to Sections 3.2, 3.3,
3.4. ESR2 wrote Sections 3.6 and 3.7 as this is related to his PhD project, and contributed
to Section 3.2. He is working with formal and algorithmic procedures to observe/measure,
stabilize and/or control neuromorphic systems. His starting point is conceptor [Jaeger, 2014]
which are being studied in various ways in his host group. His work will also contribute to
shield neuromorphic systems against parameter drift, device mismatch, aging, and outside
perturbations. ESR7 also contributed to Sections 3.3 and 3.4 as he is working on the role of
noise and robustness in his research and experimental setup. Lastly, PI Jaeger contributed to
this deliverable by writing Sections 2.1 and 3.8.

2 Existing work

2.1 Existing approaches

A wide range of physical, biological, chemical, social systems have been considered as “com-
puting”, “cognitive”, “intelligent”, “processing information”, “processing signals” in one way or
other in numerous scientific communities and subcommunities, for instance computer science
and AI (of course), analog computing, machine learning and neural computation, computational
and cognitive neuroscience, behavior-based robotics, statistical physics, information theory,
signal processing and control, network theory, materials science, dynamical systems theory,
cybernetics and theoretical biology, immunology, and within the manifold approaches that have
been variously called unconventional computing, physical computing, in-materio, neuromorphic
computing (et cetera — we have a private list of about 20 names that have been forwarded in
the last five decades). Often, but not always, the respective “computing” (wide sense) systems
have been formally modeled in various degrees of rigor and detail. There are two main motiva-
tions why formalizations have been worked out. The first motivation is scientific understanding
of the respective real-world systems in the spirit of exact natural science: formal models can
generate hypotheses which are submitted to empirical tests. The second motivation is to obtain
innovative procedures for carrying out “computations” for relevant practical tasks — procedures
which in one way or other expand the canon of digital/symbolic programming. All of these mod-
eling efforts add to the richness of our understanding of “computing”, extending and sometimes
complementing the standard digital/symbolic paradigm in many directions. A comprehensive
survey would be a monumental task. All we can do here is to point out, in random order, a num-
ber of modeling approaches which have been formally worked out to a certain depth and which,
taken together, illustrate the conceptual and methodological richness of the wider “computing”
landscape.

• According to the classical work by Ashby [1952], the main evolutionary drive for biological
brains is that they must enable adaptation to qualitatively changing exernal conditions.
This led (at least in “higher” animals) to ultrastable information processing mechanisms
which go beyond the customary stabilization mechanisms known from control theory.
An ultrastable brain commands on discontinuous search-and-discover mechanisms to
quickly cope with novel external challenges. The theory is formalized in the mathematical
language of cybernetics and control theory.

• Mathematical models in (human and animal) motion science describe complex motor
patterns and analyze how they can be perceived and controlled [Hogan and Flash, 1987,
Thoroughman and Shadmehr, 2000, d’Avella et al., 2003]. This research is potentially

Deliverable D1.1 7 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

instructive for generalizing digital, discrete-time computing models to continuous-valued,
continuous-time materials and mechanisms, in that it provides many worked-out ideas
how one can identify symbol-like invariants in continuously evolving high-dimensional sig-
nals.

• Grenander’s pattern theory, especially in the transparent rendering of Fields medalist
David Mumford [Mumford, 1994, 2002], offers a thoroughly formal account of how (pri-
marily spatial / visual) “patterns” which are emerging in complex physical systems can be
generated, compounded, transformed and encoded.

• A classical subfield of AI, qualitative physics [Forbus, 1988] (closely related: naive
physics, qualitative reasoning) explores logic-based formalisms which capture the ev-
eryday reasoning of humans about their mesoscale physical environment.

• The free energy principle [Friston et al., 2010] gives a first-principles account of hier-
archical information processing in biological brains, starting from the premise that the
central purpose of brain function is to make the predictions and decide for the actions
which are most relevant for continual survival. This approach has been worked out in
connected formal theories which range from explanations of (spiking) neural feedback
mechanisms to highly abstracted, information-theoretic models of predictive, adaptive au-
tonomous agents.

• Reservoir computing [Maass et al., 2002, Jaeger and Haas, 2004] is a model of a
learning architecture that uses a random, high-dimensional, non-adaptive, nonlinearly
excitable medium as computing substrate. First defined for recurrent neural networks
[Maass et al., 2002, Jaeger and Haas, 2004], reservoir computing has become one of the
leading enablers for computing based on unconventional materials [Tanaka et al., 2019].
It is also a main paradigm for most research in Post-Digital.

• Stochastic computing [von Neumann, 1956] and hyperdimensional computing [Kan-
erva, 2009] are two related formal theories where the carriers of information are random
(long or even infinite) bitstrings, which can be combined into new such bitstrings by oper-
ations which can be interpreted as logical or numerical.

• Insights gained in the fields of emergent computation [Forrest, 1990] steer attention to
the powers of collective phenomena in dissipative systems, where macrolevel phenomena
“self-organize” from the interactions of microlevel components.

• Machine learning and data mining methods for detecting concept drift [Gama et al.,
2013] offer statistical characterizations of how data streams change qualitatively over
time, including recent methods which exploit hierarchical structuring of distributions [Ham-
moodi et al., 2018].

• Recent propositions to develop a theory of stream automata [Endrullis et al., 2019] aim at
extending the classical theory of finite-state automata to infinite data stream processing.

• The neural engineering framework of Eliasmith [2005], Eliasmith et al. [2012a] is a
compendium of rigorously defined algorithmic procedures which allow to realize complex
signal processing and control architectures in substrates of spiking neurons. This frame-
work has become quite influential in the design and programming of spiking neuromorphic
hardware microchips and architectures [Neckar et al., 2019].

• The dynamic field theory [Schöner, 2019] models neural processing through nonlinearly
interacting fields and solitons on hierarchies of two-dimensional, spatially continuous neu-
ral sheets.

Deliverable D1.1 8 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

• Heteroclinic channels [Rabinovich et al., 2008] provide an explanation of conceptual

sequencing in neural dynamics in terms of neural state trajectories wandering between
saddle nodes — this approach is one of the few that give a mathematical account of
symbolic reasoning (though of restricted kinds) in terms of dynamical systems theory.

• According to neural sampling models [Buesing et al., 2011], ensembles of random spike
events can be interpreted as sampling from probability distributions which in turn are
cognitively interpretable and are organized and processed as in Bayesian networks. In
Section 3.8 we discuss these models in more detail.

• Under the banner line of neuro-symbolic integration, in recent years an interdisciplinary
community has emerged, where logicians from theoretical computer science collaborate
with neural network and machine learning researchers. A variety of formal models have
been developed which on the one hand, aim at explaining how logical-symbolic inferences
can arise in neural dynamics, and on the other hand how neural networks can be used to
efficiently implement logical inference mechanisms [Besold et al., 2017].

• Constructor theory [Deutsch and Marletto, 2015] is an exemplary instance of a number
of approaches in foundational physics to reconstruct/explain the laws of physics from first
principles of information processing, and the temporal evolution of physical reality in terms
of “computing”.

• Wolfram [2020] has started a large-scale community project where local graph transfor-
mation rules are studied which yield growing graphs, some of which can simulate Turing
machines. Wolfram’s vision is to find a set of simple rules whose associated growing
graphs can explain all known physical phenomena — another instance of the idea that
the physical universe can be understood as a computing system.

• In their formalization based on commuting diagrams where physical systems and ab-
stract models of computing tasks are connected through semantic and procedural rela-
tions, Horsman et al. [2014] give a general, abstract, and formal account of what it means
that a physical system “computes”. Their view is far more general than the digital com-
puting perspective.

• [Zhang et al., 2020] present a principled strategy which allows users of current industrial
spiking neuromorphic microchips to program the latter, compiling abstract task specifi-
cations to machine code through a hierarchy of formal compilation procedures. The
intermediate representation formalisms can be regarded as modeling formalisms for neu-
romorphic computing.

Modeling approaches like the ones listed here illustrate that the concept of “computing” has
many dimensions beyond the canonical framing of digital computing. However, so far we do
not yet possess a theory framework which

1. on the one hand is general enough to encompass all the currently explored venues to
non-digital computing, and

2. on the other hand is so specific that it can practically guide hardware engineers, system
architecture designers, and programmers alike to let them systematically design, build,
program and use unconventional computing systems.

The models and formalisms listed above fall short of meeting these two conditions, for a number
of reasons — they are too inexpressive, or too abstractly “meta”, or restricted to specific material
substrates or sets of physical phenomena, or too premature, or too closely connected to the

Deliverable D1.1 9 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

∈

digital-symbolic paradigm. In Section 3.8 we will analyse in more detail which requirements
have to be met for a comprehensive theoretical modeling of “computing”.

2.2 Existing hardware

In this section, we give a short introduction to some of the hardware systems and experimen-
tal platforms that will be mentioned in this deliverable. This choice coincides largely with the
range of hardware platforms that are being used in the Post-Digital consortium. For a more
detailed treatment, please refer to the deliverable D2.1 (by CSIC-IFISC): "Report on the design
of photonic- and electronic- based analogue computing".

A first distinction is to be made in the signal processing mode of the hardware systems. Here
we differentiate between digital, analog, and hybrid (mixed) signal processing. The details of
digital, analog, and mixed-signal computation are discussed in Section 3.1.

Electronics is the most mature technology in which computing hardware is built. Conventional
computer chips are generally built using digital CMOS technology. However, CMOS technology
can also be used to build analog or mixed-signal computers [Mead, 1990, Moradi et al., 2018].
Memristors, which are fabricated using non-CMOS materials, have been shown to be compat-
ible with CMOS technology, leading to hybrid memrisive-CMOS circuits [Li et al., 2018]. Spin-
tronic oscillators exploit magnetization dynamics and have been demonstrated to be compatible
with CMOS technology, providing a simple, ultra-compact, low-power element that can emulate
collections of neurons [Torrejon et al., 2017]. In our Post-Digital consortium, photonic comput-
ing plays a major role. Photonic computers work in the optical, instead of the electronic, domain.
We also distinguish between fully photonic [Duport et al., 2012] and photonic-electronic [Paquot
et al., 2012, Ying et al., 2020] computers in which the signal is converted between the optical
and electronic domain. Other materials exist in which computation has been demonstrated:
van Noort et al. [2002] used DNA to solve combinatorial optimization problems, Adamatzky
[2007] used slime mould to implement a general-purpose computer, and Cucchi et al. [2021]
used organic electro-chemical transistors to classify arrhythmic heartbeats in real time.

3 Selected Themes

3.1 Analog and Digital

Analog computation is commonly understood as computation using the continuum, i.e. real
numbers x ∈ R (and/or real time t ∈ R) whereas digital computing is concerned only with
sets that can be put into isomorphism with natural numbers n N. However, the term "analog
computing" historically stems from computing using analogy, i.e. building computers that evolve
in the same was as the system that they are used to model. Assuming a continuous model of
physical reality, the two views are largely identical.

The prevalent model of digital computation has been discovered several times in different, yet
equivalent, forms - most notably as the Turing machine [Turing, 1936], recursive functions, and
the lambda-calculus. Approaches to formalize analog computation exist, yet are not easily con-
nected and present rather independent views and models [Bournez and Pouly, 2018, Shannon,
1941, Rubel, 1993, Moore, 1996, Blum et al., 1989]. A common result in the theory of analog
computation is that access to continuous values can lead to super-Turing computation, i.e. the
ability to solve problems that a digital computer cannot solve. Siegelmann and Sontag [1995]

Deliverable D1.1 10 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

proved that a neural network with rational weights is able to compute any Turing-computable
function. Further, Siegelmann and Sontag [1994] proved that recurrent neural networks with
real weights are super-Turing, and so are evolving recurrent neural networks, even with ratio-
nal weights [Cabessa and Siegelmann, 2011]. More recently, George et al. [2016] developed
the Field-Programmable Analog Array (FPAA), a reconfigurable mixed-mode computing device
that was inspired by the FGPA. This represents an important step towards more programmable,
general-purpose analog (or mixed-mode) hardware.

Digital computing is rooted in logic which is reflected in the training of computer scientists and
results in a clear preference of computer scientists to use discrete-algebraic and logic-based
formalisms. This stands in stark contrast to the continuous, dynamical systems based modeling
languages that physicists use, and which are a natural choice for describing analog computers.
Because of this language difference, analog computers are often used in domains where the
computation or modeling is phrased in terms of differential equations. Indeed, the first ana-
log computers which were used for the analysis of ballistic trajectories computed differential
equations, and so does Shannon’s differential analyzer [Shannon, 1941].

The dichotomy of digital and analog computing devices is well-established in common parlance.
Upon closer inspection, it is observed that there is no clear line that separates digital computers
from analog ones. It can be argued that everything that is physically real, moves continuously
through time and state space and physical discrete-state machines therefore do not exist except
as formal abstraction. This was already acknowledged by Turing [1950]. At the same time,
the computer’s (and the user’s) ability to discriminate between values is limited in precision,
therefore allowing the machine to move only within a finite set of states. Giving the analog-
digital divide more ontological significance than it has leads to contradictions and non-sensical
questions of whether a certain machine is analog or digital. There are no intrinsic physical
properties that divide machines into either digital or analog [Moor, 1978]. Classifying a machine
as digital or analog is an interpretation of the computing machine on a symbolic level, and
therefore depends on the modeler’s purpose and preference. Although a physical machine can
be interpreted as either analog or digital, it is not clear how the two models of computation are
related.

The benefits of digital computing are clear; they are easy to program, there is a very productive
unified area of research that investigates their limits and complexity, and exponential scaling
laws have been providing us with continuous performance improvements (the continuation of
which is not guaranteed). In contrast, analog computers do not have a unified research com-
munity and progress cannot keep up with digital scaling laws. However, as digital computing
is approaching fundamental limits regarding energy and size [Waldrop, 2016, Hennessy and
Patterson, 2019], it may be worth to re-investigate analog computing. Hasler and Marr [2013]
show that computational efficiency, defined as computation per energy, has not scaled as well
as expected, and predict an energy efficiency wall with marginal returns using classical digi-
tal techniques. Sarpeshkar [1998] (Figure 3) shows that analog computation is more efficient
than digital (in MOS technology) when the output signal-to-noise ratio is below a certain value,
which is the case for many applications, e.g. cognitive-style computation using neural networks
of limited precision.

It is also possible to merge analog and digital computing with so-called mixed-signal process-
ing. Sarpeshkar [1998] describes such hybrid approaches as the "best of both worlds" and
proposes a distributed computing architecture with continuous-signal, continuous-time analog
computation with discrete-signal communication and restoration blocks.

Deliverable D1.1 11 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

3.1.1 Physical computing

Recently, interest in analog computing has resurfaced as physical computing [Jaeger, 2021,
Hasler and Black, 2021], an area that aims to exploit physical nanoscale phenomena of many
sorts for computation, thereby leading to more energy efficient computation. Much drive has
come from artificial intelligence, where cognitive-style computation using neural networks present
a natural opportunity for analog computers as accelerators [Musisi-Nkambwe et al., 2021]. Two
fields connected to physical computing deserve special mention in this context: natural com-
puting, which was already mentioned in the introduction, aims to take inspiration from nature
[de Castro, 2007], and neuromorphic computing aims to take inspiration from the brain in par-
ticular [Indiveri, 2021].

Quantum computation may also be seen as a model of analog computation, allowing more
powerful computation by accessing complex-values amplitudes. The computational power of
quantum computers are well-explored in theory. While quantum computers do not lead to an
exponential speedup for all problems, they do lead to a significant speedup for a certain class
of problems. It is interesting to note that quantum computing has also been exploited and
demonstrated in classical analog hardware, using a paradigm called Hilbert Space Computing
[Kish, 2003]. As such, it seems like a key benefit of quantum computers lies in their access
to analog values. Note that this has been proposed only as an experimental platform to test
quantum algorithms without the practical difficulties inherent with current quantum computers -
the argument is not that quantum computers can be made obsolete through analog computers,
see Kish [2003] for details.

Analog and physical computation has also been widely explored through the paradigm of reser-
voir computing, which originates in the reservoir of the Echo State Network [Jaeger, 2001] and
the Liquid State Machine [Maass et al., 2002]. Tanaka et al. [2019] give an overview of recent
applications of reservoir computing in physical systems.

A key problem in physical computation is the fundamental difference between physical models
and computing models. Horsman et al. [2014] argue that the physical and computational mod-
els of devices must correspond exactly in order to compute and they propose their framework
of "commuting diagrams" to this end. Marković et al. [2020] argue that including more physics
in algorithms and materials for neuromorphic computing can have a major beneficial impact on
the development of new devices and the use of existing ones. This alignment between physics
and computing is a common theme in this report, and investigated further in Section 3.5.

3.1.2 Critical gaps

Evidently, analog and mixed-signal computation is suffering from the lack of theoretical unifica-
tion similar in breadth, depth and precision as the theory of Turing computability provides for
digital computation. Such a unification of analog computing approaches and an accompanying
formalism to describe analog computation is missing and highly desirable, see Jaeger [2021],
Stepney and Hickinbotham [2018]. Such a formalism would serve as a bridge to tie together
models of computation with physical models of the underlying materials. Hasler and Black
[2021] advocate the development of an "Analog Turing Machine" as a fundamental model of
analog computation as well as the development of an "analog complexity theory" which would
allow a clear comparison of time and space complexity (in the theoretical computer science
sense) between digital and analog. For a detailed discussion on such a unifying theoretical
basis for a general theory of computation that includes both digital and analog computation,
see Section 3.8.

Deliverable D1.1 12 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

→ → → →

Aside from a general theory of analog computation, another critical gap is found in the way
analog computers are currently programmed. That is, they are not programmed at all, in the
conventional sense of building programs top-down, from the high-level conceptual ideas to-
wards the low-level hardware implementation. Instead, programming/designing analog com-
puters is seen as a bottom-up "art", rather than an engineering problem. One way forward may
be to compile a library of "analog standard cells", i.e. a set of computational primitives that are
used as standardized building blocks in analog circuit design [Hasler, 2020b]. A significant step
forward is given by the recent development of FPAAs and the accompanying toolkit [Hasler,
2020a]. The problems with programming unconventional computing devices, including analog
ones, is further explored in Section 3.5.

3.2 Timescales

Timescales in unconventional hardware are already under investigation in the European project
called MemScales in the research group of ESR1 and ESR2. Both ESRs will be involved and
benefit from these investigations. This section briefly illustrates the importance of timescales in
the brain and outlines some of the critical gaps that are identified and analyzed in more detail
in a report from the MemScales project [Jaeger et al., 2021].

Biological brains exhibit dynamical processes on many timescales, and different processes af-
fect different physical elements in brains in different ways. This leads to a entangled maze of
dynamical phenomena in which it is hard to not get lost. A coarse orientation is provided by the
conceptual sequence inference adaptation learning development evolution. These
terms denote bundles of dynamical phenomena which manifest themselves on increasingly
long timescales. None of them has a precise definition, but all of them are used in compu-
tational science, cognitive science and neural-networks based machine learning with more or
less similar semantic intuitions:

• Inference processes refer to the fast operations of sensor processing, motor control and
“reasoning” which do not essentially rely on structural or parametric changes of the neural
processing system, using the system “as is”. In machine learning one often speaks of
“inference” when a ready-trained neural network (or other ML model) is used to process
task instances for which it has been trained.

• Adaptation is a particularly broad and vague concept. A common denominator of its uses
seems to be that adaptation works on slower timescales than inference, and is in principle
reversible. It often describes processes when a cognitive / neural system re-calibrates, or
re-focusses itself when the environmental context of operation changes. In formal mod-
els, adaptation processes often are expressed through changes of control parameters in
neural subsystems, induced by “top down” regulatory mechanisms or subsystem-inherent
homeostatic self-stabilization mechanisms. While this seems to us the most common in-
tuition connected to the word “adaptation”, it is also used in a much more generalized
way to denote any change of any sort of system (from a single synapse to a biological
population in an ecological niche) that improves the system’s “performance” or “viability”.
In those cases, adaptation is not usually reversible.

• Learning refers to processes which expand the functionality of a cognitive system on the
basis of experience. Learning processes are usually considered irreversible (“forgetting”
are processes in their own right which cannot be understood as time-reversed learning).
Learning processes are commonly associated with irreversible changes in system param-
eters — in neural networks typically “synaptic weights”. Structural changes (like deletion

Deliverable D1.1 13 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

of neural connections or adding neurons to a network) may also result from learning,
though this aspect seems less central to the “learning” concept than mere parametric
change.

• Development is a notion which is much more common in the cognitive and neurosciences
than in machine learning. It refers to the life-long history of an individual, autonomous cog-
nitive system (animal, human, or generalized “agent”). The development history is often
segmented into life periods like pre-natal development, stages of infancy, youth, adoles-
cence, old age which are in turn associated with specific structure-changing processes in
the agent’s brain. We foresee that developmental change will also become an important
theme in neuromorphic computing systems based on non-digital hardware which cannot
be “programmed” and whose physical substrate is subject to aging.

• Evolution is the longest-timescale item in our list of process categories. It describes the
adaptive change of entire populations, across generations, to fit a (possibly changing)
environmental “niche”.

Mathematical models of cognitive systems describe inference and adaptations processes (typ-
ically) through changes in the values of system variables (dynamical state variables and/or
control parameters). The system equations do not structurally change. In contrast, models of
development and evolutionary processes must account for structural changes in the system
equations. Formal tools for effecting and simulating structural change in system equations
exist in the form of genetic / evolutionary algorithms. However, mathematical theories that
can be used to characterize and analyse structural change in qualitative terms are scarce,
heuristic, and generally still under-developed. We find that certain tools in mathematical logic
(“non-monotonic logic”) come closest. However, these formalisms are not connected yet to
dynamical systems modeling.

3.2.1 Critical gaps

More complex cognitive processing needs more timescales. A task’s cognitive complexity
seems closely linked to the spectrum of memory timescales needed for it. This indicates that for
a systematic development of neuromorphic technologies it is helpful to work out a complexity
hierarchy of task types and initially not “reach for the stars” but concentrate on tasks of modest
complexity that require to integrate information across a few timescales only (or even a single
one). This is illustrated, for example, in the work by He et al. [2019] (described in more detail
in Section 3.5) that was done in the research group of ESR1, ESR2, and PI Jaeger, where
the timescale of the learning task was slower than the timescale of the processing units in the
unconventional hardware system.

Delays in unconventional computing. Signal travel delays in unclocked analog neuromor-
phic microchips become a problem when delay times are not well separated from the fastest
timescales demanded by the processing task (in which case delays can be ignored). For high-
frequency online processing tasks (for instance in future neuromorphic low-energy communica-
tion nodes), an explicit modeling and algorithmic compensation for physical delays is needed.
For multi-timescale offline tasks, an upper limit for task throughput rates is given by the neces-
sity to separate physical delays from the fastest task timescale. We note that delays are no
mathematical or algorithmical problem in digital computing as long as physical on-chip delay
times are much shorter than clock cycle times.
If one would find a way to physically realize tapped delay lines (by traveling waves or solitons,
maybe skyrmionic?), multiple timescale dynamics (with longest scale given by longest signal

Deliverable D1.1 14 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

travel time on the delay line) might become explicitly designable. In order to achieve this, we
need mathematics and algorithms for embedding tapped delay lines in analog computing ar-
chitectures.

Life history timescale. If the motto of brain-like computing is taken seriously, the “lifespan”
timescale of an individual hardware system becomes relevant. Digital microchips don’t age
and don’t have an individuation history: if they start processing 0’s and 1’s differently from
when they were sold, they are called “broken” and are replaced by an unbroken identical twin.
Analog neuromorphic microchips will likely be individual from the moment when they leave the
fab (due to device mismatch); they will often exhibit slow parameter drift and physical aging;
and they cannot be “programmed” in the traditional sense but will likely have to be trained. This
will lead to individual lifelong learning and adaptation histories.
What is needed are novel mathematical tools to describe qualitative change and continual/lifelong
learning schemes (algorithms and training schemes) that are appropriate for physically aging
systems, which in particular will require a collaboration between learning and homeostatic self-
stabilization mechanisms.

3.3 Stochasticity

Looking at the theory of digital computation and its origins in logic, it is clear that the operation
of a digital computer heavily depends on the reliable operation of all of its components. A single
bit flip in any of the computers’ registers can lead to its failure. Because the standard theory of
digital computation only works with perfect precision, this high precision requirement has been
put on hardware engineers who have to ensure that the memory and operation of every single
component is reliable.

This stands in stark contrast to the brain, whose neurons are unreliable and noisy [Rolls and
Deco, 2010], with neural spike output changing from trial to trial in identical experiments [Maass,
2014]. Yet, somehow, the brain is able to generate reliable behavior from unreliable compo-
nents. This has fascinated the research community since the early days of computers and
led to models of computing with probabilistic logic [von Neumann, 1956] and the inception
of stochastic computing, where information is represented and processed in probability dis-
tributions [Alaghi and Hayes, 2013]. As computing technology moves towards circuits with
increased uncertainty in their behavior (cf. Section 3.4), we need to better understand the use
of probabilities in computation.

At this point it may be helpful to point out the difference between stochastic computing and
randomized (or stochastic) algorithms. The former is a model of computation that differs from
digital computation in interesting ways. The latter is a standard approach in digital computing
to design algorithms that make use of a (pseudo-)random number generator in order to achieve
good expected performance, where the expectation is taken over the distribution of possible in-
puts on which the algorithm is run. Such randomized algorithms give rise to complexity classes
like the bounded-error probabilistic polynomial time class (BPP) which includes all decision
problems that can be solved by a probabilistic Turing machine (which runs such randomized
algorithms) in polynomial time with an error probability no greater than 1/3 for all problem in-
stances. This is comparable to a computation in quantum computing, where a quantum circuit
is inherently probabilistic: the final measurement, or readout, from a quantum algorithm "col-
lapses" each qubit state, which might be in a superposition of 0 and 1, into a single bit of
either 0 or 1 with a probability that depends on the quantum state. This makes randomized
algorithms a natural choice for analyzing quantum computation, and for comparing classical
and quantum computers. The class of problems that can be solved by a quantum circuit in

Deliverable D1.1 15 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

polynomial time with an error probability no greater than 1/3 is BQP. It is known that BPP is
contained in BQP, that is, quantum circuits are at least as powerful as probabilistic Turing ma-
chines, but it has not been shown whether BPP = BQP [Aaronson, 2013]. We have evidence
that gives us reason to believe that indeed BPP = BQP, for example the existence of a quan-
tum factoring algorithm [Shor, 1994] but no classical one. Evidently, randomized algorithms are
important and immensely useful in practice, but as they are immersed in the prevailing digital
paradigm of computing as discrete symbol manipulation processes, we will not further discuss
randomized algorithms in this form, and instead turn to more general aspects of stochastic
computation.

The following two paragraphs lean heavily on the review paper by PI Jaeger [Jaeger, 2021].
In digital computation, symbols are primary objects which are manipulated according to rules
of logical inference to yield a computation. In stochastic models of computation, probability
distributions can be considered as the primary objects, analog to symbols in digital computing
[Jaeger, 2021]. These probability distributions need not be represented as closed formulas,
but can also be represented using stochastic sampling (which has natural applications in opti-
mization problems) for example through Monte Carlo [Neal, 1993] or particle swarm methods
[Dellaert et al., 1999]. Such sampling-based representations of probability distributions can
represent distributions which can not be described analytically. The role of logical inference
can then be replaced by probabilistic inference. According to the Bayesian view on probability,
probability theory is seen as an extension of logic [Jaynes, 2003], which further extends the
analogy between logic as a standard formalism for digital computing and probability theory as
a formalism for stochastic computing.

Probabilistic inference is widely used as a framework in cognitive science to describe predic-
tions about the outcome of an agents’ actions (see Bayesian brain [Tenenbaum et al., 2006],
predictive brain [Clark, 2013], free energy model [Kiebel et al., 2008]). In mathematics and ma-
chine learning we find various computational frameworks that formalize some aspects of the
predictive brain hypothesis [Jaeger, 2021], for example the above-mentioned computation with
probabilistic logic [von Neumann, 1956], observable operator models and predictive state repre-
sentations of probability distributions [Jaeger, 2000, Littman et al., 2001], Boltzmann machines
[Ackley et al., 1985], or the neural engineering framework [Eliasmith et al., 2012b].

Stochasticity and noise does not seem to be a problem in the brain, but instead might be con-
sidered an essential feature [Kitajo et al., 2003]. There are many sources of stochasticity in
the brain, such as unreliable transmission in synapses or the stochastic opening and closing
of membrane channels [Maass, 2014]. In theoretical neuroscience, the stochasticity of neural
spike events has been interpreted as a sampling operation, both in time and in space, through
which information about underlying probability distributions is represented [Buesing et al., 2011,
Pecevski and Maass, 2011]. In another view, the precise firing time patterns can also be con-
sidered to carry information [Thorpe et al., 2001, Izhikevich, 2006, Deneve, 2008], instead of
representing an underlying distribution through samples.

Such sampling-based processing has also been used productively in non-digital physical com-
puting systems, for example in DNA computing [van Noort et al., 2002] for solving optimization
and search problems, and with wider application range in analog spiking neuromorphic hard-
ware [Indiveri et al., 2011, Haessig et al., 2018, Moradi et al., 2018, Neckar et al., 2019, He
et al., 2019]. These experimental results demonstrate the usefulness of exploiting stochasticity
in unconventional computing systems, as many of these systems are inherently noisy [Zhou
et al., 2020, Semenova et al., 2019]. Even in digital computers, decreasing device sizes has
lead to manufacturing errors that result in increased variability in physical circuit characteristics.
Thus, the development of stochastic computing may be a deciding factor for taking full advan-

Deliverable D1.1 16 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

tage of future computing hardware, while simultaneously allowing lower precision requirements
from hardware engineers.

In order to create computing systems with characteristics similar to those of the biological neu-
ronal networks, e.g power efficiency, learning capability, and robustness, it is necessary to
leave behind the concept of artificial neural networks that use precise weights to compute [Olin-
Ammentorp et al., 2021]. The noise tolerance and robustness of the brain has already served
as inspiration to create neuromorphic computing based on single-electron circuits where ther-
mal noise is used to carry out neural computation [Oya et al., 2007].

Moreover, Spiking Neural Networks (SNNs) have been implemented using analogue hardware
where noise improves the resilience to synaptic inaccuracies [Olin-Ammentorp et al., 2021].
Finally, noise has also been used as a tool to increase the convergence speed of SNNs when
recalling information stored in complex probability distributions. It has also been demonstrated
to be useful when creating heuristic solutions for hard computational problems, and it is a key
element in self-organization and learning in SNNs [Maass, 2014].

3.3.1 Critical gaps

While stochasticity obviously plays important roles in neural and physical systems, both benefi-
cial and detrimental, we are still lacking a full understanding of the mechanisms by which noise
impacts information processing in all its different roles. Practical theory guidance for hardware
system engineers, architecture designers, and programmers or users is rarely available.

A promising start to better understand the nature of stochastic computation are studies similar
to the one by Semenova et al. [2021] which identify what kind of noise can be tolerated in differ-
ent models of computation. A possible next step is to go beyond noise tolerance, and identify
the kind of noise that can actually benefit the computation, e.g. by acting as a regularizer in
machine learning applications.

3.4 Robustness

A key difference between digital and natural computation is their robustness. While a single
bit flip can lead to the complete failure of a computer program, the brain works reliably despite
the ongoing death and re-generation of neurons. Where human (animal) vision is robust to a
wide variety of changes in lighting conditions, programmed computer vision programs struggle
and exhibit brittleness in unforeseen situations. Our current theories of digital computation work
only because this computation unfolds in a hardware that is perfectly known in advance - thanks
to the precision requirements that digital hardware designers comply with.

Such precision engineering does not exist in natural systems, which use "robust adaptive proce-
dures instead of optimizing strategies that work well only when finely tuned to precisely known
environment" [Simon and Laird, 2019]. We are only beginning to understand the mechanisms
that provide for such physical and functional robustness that natural systems exhibit. Kitano
[2004] provides an architectural explanatory framework for the robustness of biological sys-
tems and a first step to a broader understanding which would then also enable the translation
of these findings into engineering practices. This is not merely a problem for unconventional
computing, however. With increasing miniaturization and shrinking dimensions of circuit com-
ponents, even conventional digital VLSI circuits are subject to increased levels of variation
and noise [Constantinescu, 2003] that need to be faced if this miniaturization is to continue.

Deliverable D1.1 17 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Moreover, robustness is not restricted to the physical implementation of computing devices but
also extends to the software and programming of these devices. Reliability, security, and de-
pendability are core concepts and any software engineer is trained in methods to increase or
guarantee the reliability of software systems.

We consider a system to be robust if it is tolerant to faults, where faults may be introduced from
several different fronts. In digital hardware, the faults may be broadly classified as static (physi-
cal defects that originate in the design or manufacturing phase) or dynamic (e.g. latch up, a con-
dition in which a CMOS gate gets stuck at a fixed value) [Woods and Lightbody, 2008]. Other
sources of faults include: data noise (in the input), internal/thermal noise, physical damage,
programming errors (bugs), and modeling errors. Under robustness, we understand an overall
framework for dealing with faults. Some of the methods that have been identified in robust sys-
tems are: redundancy, compensation, diversity, mechanical robustness, granularity, restoration
(cognitive), cohesion and coupling, recovery, self-healing, self-repair (physical).

In this section, we give a brief outline of some of the work on making unconventional computing
hardware robust. Much of this section concerns the internal noise of these devices because
this is closely connected to the project of ESR7, who contributed to this section, as well as
the mismatch and limited observability which is a key issue for ESR1, who is working with
the Dynap-se analog neuromorphic hardware [Moradi et al., 2018] and also contributed to this
section. Finally, a more general discussion on theoretical proposals to deal with imprecision
and uncertainty from an algorithmic and knowledge-representation view is given.

Several implementations of analog neurons have been proposed using physical components
as for example lasers, memristors or spin-torque oscillators, among others. Moreover, optical
and electronic concepts for parallel networks have demonstrated that it is feasible to achieve
fully parallel networking. In spite of the characteristics that make such systems so promising,
they suffer from intrinsic noise generated by their analog components [Semenova et al., 2019,
Zhou et al., 2020].

Electronic implementation of ANNs is the most mature technology and a common approach in
this context is in-memory computing, which typically uses non-volatile memory (NVM) crossbar
arrays to encode the network weights as analogue values. Here, noise is a consequence of
the limited precision of memristive NVM cells as well as of the fact that the stored values are
prone to change over time between read and write operations [Zhou et al., 2020]. The noise on
this type of hardware can be modeled by an additive zero-mean Gaussian noise that is applied
on the parameters. The variance of this Gaussian noise is a function of the effective number
of bits of the output of an analogue computation or proportional to the range of values that the
device can represent [Rekhi et al., 2019].

In neural network with spiking neuron models (SNNs), noise has been shown to play a benefi-
cial role, acting as a regularizer that increases the network’s robustness [Olin-Ammentorp et al.,
2021]. In order to take advantage of this positive effect of noise, Stromatias et al. [2015] pro-
pose an adapted training mechanism that improves the network’s performance by over 30%.
It is important however, to take into account that software simulations of hardware noise is
not always accurate. Petrovici et al. [2017] characterize several of these distortive effects and
show how a hierarchical topology shapes the information flow in a way that makes them largely
resilient to these effects.

In analog hardware built using photonics, only limited efforts have been made to characterize
the noise present. A very recent study can be found in Semenova et al. [2021]. When working
with this type of hardware, noise is simulated by perturbing the output of the neurons using a
noise operator that has an additive and a multiplicative component. Moreover, these compo-

Deliverable D1.1 18 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

∈

nents are composed of correlated and uncorrelated noise. The first one is a consequence of
the components’ internal processes, in this case the activity of the neurons. The second one
is generated in central components that influence the overall circuit’s state, for example the
voltage source that feeds the circuit or its temperature [Semenova et al., 2019].

In many unconventional computing devices, device mismatch is drastically higher than in con-
ventional electronics and leads to problems that do not need to be addressed in digital comput-
ing. In organic materials, current technology does not enable us to produce multiple identical
devices; instead, every device is unique and behaves differently from others. This makes ap-
parently identical circuits respond in different ways to the same input [Weis et al., 2020, Andraud
and Verhelst, 2018]. A source of these mismatches are the variations and defects found in the
manufacturing process. These variations are known as static because they are constant after
affecting the circuit only once. Nevertheless, these are not the only ones, as aging or stress
lead to variations with a slow and varying impact on the circuit over time, and because of this,
they are known as quasi-static. Finally, it is possible to find variations that affect the circuit in a
rapid way and therefore are known as dynamic. These are a consequence of temperature and
voltage changes, among others [Andraud and Verhelst, 2018].

For example, in the organic electrochemical networks by Cucchi et al. [2021], the dendritic
trees are grown separately on every device and yield distinct connectivity and functionality
which makes programming impossible. A well-established solution in material computing is to
treat this network as a reservoir and train only the readout layer. The authors are able to report
good performance, yet to better exploit the material’s computational power, a more refined
way to handle this device mismatch may be desirable. This device mismatch is not limited to
organic materials, however, but has also been reported across the literature on unconventional
computing, for example in the nano-electronic dopant network processing unit [Bose et al.,
2015, Chen et al., 2020] where each unit is treated separately, essentially as a blackbox, and
trained using an evolutionary optimization procedure. Even in analog electronic hardware,
device mismatch prevents users from directly copying functionality across different chips as
one can do with a program on digital computers. Instead, novel mathematical methods need to
be developed in order to transfer algorithms between devices [He et al., 2019].

Strategies known as self-calibration (compensate static variations), self-healing (compensate
static and quasi-static variations) and self-adaptation (compensate static, quasi-static and dy-
namic variations) are promising approaches to counteract this problem by letting circuit com-
pensate for these variations itself. To achieve this, the circuit must have sensors to monitor the
existence of variations, tuning knobs to adjust the circuit’s performances and an algorithm that
makes the decision of which tuning knob must be adjusted [Andraud and Verhelst, 2018].

The term soft computing has been coined by Zadeh [1994] to denote a set of algorithms that
exploit their tolerance for imprecision and uncertainty. While traditional (hard) computing needs
precision, certainty and rigor, soft computing uses modes of reasoning that are approximate
and robust, in the sense that is introduced in this section. Since the inception of soft computing,
neural networks were a prominent example of this approach. Another tool is fuzzy logic, a form
of many-valued logic (in fact, infinite-valued logic) in which a truth value is represented by a real
number x [0, 1]. Fuzzy logic has found applications in control theory and artificial intelligence
because of its ability to reason with vagueness. As such, it differs from probability theory and
probabilistic reasoning, which deals with inference made under uncertainty. Valiant [2013] calls
such approximate algorithms, when applied to learning tasks, ecorithms (cf. Section 3.5). As
opposed to algorithms, which exist only in the computer, ecorithms constantly interact with
the real-world environment, and learn from this interaction. As such, they include machine
learning algorithms as well as evolutionary algorithms. The defining feature of ecorithms is

Deliverable D1.1 19 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

their interactiveness and their robustness to a wide range of possible environments.

Until now, we have interpreted robustness in light of hardware variations and noise. Another do-
main in which robustness is a well-known issue is that of reasoning and knowledge databases.
In the traditional approach (see Section 3.6), knowledge was programmed into a database by
human programmers, and a formal logical framework was used to reason about that knowledge
and draw inferences [Lenat, 1995]. These systems have found successful applications in many
domains, whereas in other domains they often fail when used in situations not foreseen by the
human programmer. This failure is often called brittleness. In order to reason with imprecise
concepts, from fuzzy logic or generated by learning algorithms from real-world interactions, var-
ious approaches have been proposed. Robust logic [Valiant, 2000] is a way to overcome the
brittleness of traditional real-world reasoning programs that are based on mathematical logic.
Robust logic provides a sound and efficient proof procedure for reasoning and is more robust
because its rules are learnable.

3.4.1 Critical gaps

Since much inspiration for building robust systems comes from nature and, particularly, from
biology, a better understanding of how biological systems achieve robustness is desirable. Such
a research agenda is outlined and exemplified by Kitano [2004]. Of course, this must also be
translated into a set of practical guidelines and principles that enable hardware (and software)
engineers to design robust computing systems.

3.5 Programming

Regardless of the substrate underlying the computation, our ability to exploit unconventional
computing is limited by the methods of programming these substrates. Similar to the concept of
computing itself, the notion of programming will need to be re-investigated from the perspective
of unconventional computing hardware. Some issues of programming such unconventional
devices have already been investigated in conventional programming, such as the complexity
of interactive large-scale software systems, while others are novel because of their irrelevance
in digital computing, such as noise, limited read/write access, device mismatch, always-on
capability, or multiple timescale dynamics.

Research in digital computing has brought us increasingly sophisticated programming tools that
facilitate the development and maintenance of complex software systems. We need to reach
a comparable level of sophistication in the software tools for unconventional computing if we
wish to build systems of comparable complexity. Luckily, we do not have to start from scratch;
decades of research into programming languages and software engineering are ready to be
adapted for unconventional hardware.

This section will first give a brief overview of programming research, identify major trends in
programming digital computers and take a closer look at the programming problem itself. We
proceed to clear up some terminology that is frequently used in programming unconventional
computers. We then survey some existing approaches and paradigms for programming uncon-
ventional computers. Finally, we point to remaining challenges and gaps in the research on
programming unconventional computers.

Deliverable D1.1 20 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

3.5.1 Programming trends

In the early days of computing, programming was done by manually configuring the computer’s
internal wiring. The representation of a program was very close to the underlying hardware,
translating Boolean circuits into electric diagrams and rewiring the computer to represent those.
Stored-program computers eliminated the need to mechanically rearrange wires, instead en-
abling programmers to load the program into memory and execute it directly. However, before
the PC revolution, computers were operated in batch mode so that programmers would submit
their programs (e.g. as staples of punched cards) to the computer operator, who executed
these programs in a FIFO (first-in, first-out) manner. It was common to have to wait a day to get
the results from running simple (by today’s standards) programs.

One of the first major trends in programming was to tighten the feedback loop between the
programmer and the computer. This started with simple end-user interfaces that could submit
jobs directly to a powerful computer, but only really took off when personal computers became
powerful enough to run most programs. The cost of making (simple) mistakes, e.g. misspelling
a variable name, has decreased dramatically. While it would have cost a programmer in the
1980s a whole day, today compilers (or even automatic syntax checkers embedded in the
development environment) will detect the mistake in a fraction of a second. On the upside,
this has enabled programmers to write more complex software faster, while on the downside
it has arguably decreased code quality if programmers can write and execute faster than they
can think.

Another major breakthrough was the abstraction of low-level hardware details from the pro-
grammer. The history of programming languages can be seen as that of continuously raising
the level of abstraction at which the programmer works. From machine code (1st generation)
to assembly code (2nd generation) to high-level programming languages (3rd generation), the
level of abstraction has increased further. Because this leads to a reduction in code needed to
specify certain (high-level) operations, such higher programming languages can also be seen
as more "automated". In fact, raising the level of abstraction in programming languages has
often been euphemized as "automated programming" [Parnas, 1985].

A more recent trend towards automation in programming has emerged from research on ar-
tificial intelligence, where a program is not fully specified by the programmer, but instead the
program (or part of the program) is learned by the computer. This is often done with a super-
vised machine learning setup, where labeled training data is used to infer a program. In such a
setup, recently termed Software 2.0 [Karpathy, 2017], much of the programming work shifts to
collecting, curating, augmenting and maintaining a good dataset. More will be said about these
techniques of differentiable programming (a superset of deep learning) and program induction
later.

The industry has moved away from pure programming towards software engineering, which
includes programming as a sub-task, but goes significantly further. The key distinction here is
that software systems are complex, interactive systems. In computer science research, pro-
grams are often treated as equivalent to algorithms, in the sense that they are free of side
effects. In practice, however, algorithms are only building blocks that make up a complex soft-
ware system full of side effects in the form of interactions with the environment (either the user
or other software systems). In effect, this is the distinction in functional programming between
pure and impure functions. Much research has been focused on the pure parts of software,
whereas in practice most software is impure. This trend towards more complex, interactive
software systems has fueled the software complexity crisis and is the source of much technical
debt in the industry.

Deliverable D1.1 21 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

formalizing
Specification

synthesis, optimization, induction

Intention
NLP

Program execute
Behavior

thinking coding compiling debug

Idea

3.5.2 Views on programming

Programming is the principled way of going from an intention (a desired program or behavior)
to a system (usually a computer) that implements and satisfies this intention. In this broad con-
ception of the term, it is perfectly reasonable to speak of programming a thermostat, or even
(aspects of) behavior of an animal (conditioning) or another human being (social engineer-
ing). Here, we are concerned with programming unconventional computers, so we will restrict
ourselves to programming computers (in a very general sense of the word, going beyond Tur-
ing).

Figure 1 shows a diagrammatic representation of the programming process. The program-
ming process starts with an intention, which can be thought of as the desired behavior, the
desired function, or the problem which ought to be solved. This intention can be formalized
into a specification in some formal language, which in turn can be used to automatically gen-
erate a program that satisfies this specification. This can be done through synthesis programs
and is widely used, e.g. in FPGAs. Instead of formalizing the intention, one can also come
up with an informal idea for a program. This idea comes one step closer to the implemented
program, which can be obtained by simply coding (and thereby formalizing) the idea in some
programming language. There is also a third way which does not require the formalization of
the problem at all. Natural Language Programming (NLP) is an approach in which a computer
can generate (and execute) a desired program from natural language input. This is exemplified
in voice assistants like Siri, which take natural language input and act on the information that
is given. Upon saying "Hey Siri, set an alarm for 8AM tomorrow", the device will execute an
alarm-setting program. In this case, the alarm-setting program was likely pre-programmed by
a human programmer as a routine that takes a single variable (the time for which to set the
alarm), but this can be further extended to work for more generic programs. Once the program
has been generated (regardless of how it was generated), it can be compiled into different
programming languages. Usually, the program is first generated in a high-level programming
language and then compiled "down" into a hardware-compatible language which is then exe-
cuted. The execution of the program then yields some behavior. Sometimes (or most times, in
the case of human programmers), the program will not yield the desired behavior and needs to
be debugged - the behavior is observed and it is determined in what way the behavior deviates
from the desired behavior, and finally the program itself is manipulated in order to decrease
the difference between expected and desired behavior. This can also be done automatically,
e.g. through reinforcement learning, if the difference between expected and desired behavior
is formalized as an error function.

Figure 1: Diagram for the process of programming a computer. Adapted and extended from Grünert
[2017]. Inspiration (and some terms) taken from Primiero [2016]. Edges highlighted in blue
reflect automated processes which themselves require the execution of a computer program
to be realized.

Deliverable D1.1 22 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

The diagram further shows that programming involves multiple problems that can be treated
more or less in isolation from each other. First, the specification problem describes the difficulty
to specify the program in sufficient detail to the computer. In more complex software systems
that are composed of multiple interacting programs, this can be more naturally thought of as
a design problem. Usually, a computer will require a higher level of detail than would be re-
quired for a human being to do the same task. This formalization of the intention, either into
a formal specification or into a formal program, is the first big challenge when programming a
computer.

It is important to note that the design process for complex software systems goes beyond
designing algorithms that are implemented. It also includes the design of the software ar-
chitecture, infrastructure, network, databases, and more. The process is much more akin to
designing, say, a building, than to communicating a particular task or behavior. The design is
often an iterative process, perhaps even a self-organized evolutionary process.

Once the program is specified in sufficient detail, the communication problem concerns the
communication of the program to the computer in some language. Much of computer science
research is focused on finding efficient programming languages to communicate the expected
behavior from humans to computers. Most programming languages are formal languages
which can be compiled into machine code and therefore directly interpreted by the computer
- this translates into significant work for the human programmer who has to learn a new lan-
guage in order to write programs. The burden of the communication therefore lies with the
human programmer - the machine simply executes what it is being told, and cannot be at fault
for misbehaving. An alternative approach that has only recently gained traction is that of natural
language programming. The idea is to program the computer in our own native language, rather
than in the computer’s native language. Of course, the burden of translating natural language
into a formal language that is interpretable by the computer is once again on the human side,
but with current machine learning techniques, this can be done without manually programming
the whole procedure.

The final step in programming a computer is the control problem, i.e. to make sure that the
computer actually follows the program that has been communicated to it. This task can be
very simple, if the hardware is sufficiently reliable and the program does not contain any bugs,
but it can also be quite challenging, for example when working with unreliable analog hard-
ware.

A common naive perception of conventional programming, often entertained by students who
have finished their first semester of programming, is that programming is only a communication
problem. This may hold true for programming simple functions in a classroom environment,
where the programs are simple enough to be specified directly and the control problem is
abstracted away. In contrast, when programming real computing systems (especially uncon-
ventional ones), all three problems become important.

3.5.3 A taxonomy of computer programs

Before continuing with the concept(s) of programming, it is necessary to first define what it
is that we call a computer program in the first place. We begin by the original definition of a
computer program in terms of the Turing machine and gradually add different ingredients in
order to reach the complex software systems that we work with today.

A Turing machine [Turing, 1936] M can be seen as computing a function on the integers M :
N → N. The set of all functions that can be computed by a Turing machine is called the set of

Deliverable D1.1 23 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

M
U

E

× →

×E → ×E

all computable functions. Such a machine can be seen as a "program", where the underlying
transition function defines how the "program" operates and thereby determines its input-output
behavior. However, the machine can also be seen as a general-purpose computer which can
execute any other (computable) function. In this view, the machine (often denoted by for
universal machine) will take as input an encoding < M > of the machine which it should
simulate, as well as an encoding < x > of the input x to that simulated machine.

This definition of a machine corresponds to what Turing [1936] calls the a-machine (for "auto-
matic machine"), whose motion is completely determined by its configuration. We will call the
program that such a machine can implement an algorithm. An algorithm is therefore a com-
putable function on the integers (or, a function on an isomorphism on the set of integers). This
corresponds to what are called pure functions in functional programming. Such functions are
stateless, and do not depend on the environment - their behavior only depends on the input
given to them. For example, the function gcd : N N N is a pure function, and Euclid’s
algorithm is an algorithm to compute this function. In contrast, the function Date.now() is not
pure - if we call it at two different times, it will return different values as output, despite getting
the same input (which is, no input). For the same reason, random number generators are not
pure. As a further example, the function readline() is not pure because it takes input from the
environment (in this case, the user).

Obviously, this does not capture all kinds of programs that we are interested in. Interaction with
the environment is essential and without it, we are left with little more than a calculator. Roots
of this can be found already in Turing [1936], where he described not only the above-mentioned a-
machine, but also the c-machine (for choice machine). In Turing’s words:

When such a machine reaches one of these ambiguous configurations, it cannot go
on until some arbitrary choice has been made by an external operator.

This is exactly the kind of interaction that we want to model. A simple way to include this
environment into our models is to include the environment as an additional input and output
parameter. Such an interactive algorithm would then be modeled as a function f : N N
where is the set of all possible states in which the environment can be. This is also the way
that interaction is dealt with in functional programming languages, where such functions are
called impure. Unfortunately, this approach is quite limited and is not enough to model all
aspects of interaction in programs.

Evidently, interaction is needed to accurately describe today’s computers and programs. What
is described by pure functions, or a-machines, could be called sequential computing. However,
real-world computing is not sequential, instead we have programs communicating with humans
and with each other - in different threads on the same computer and across the world through
the internet. Moreover, computation in unconventional substrates will certainly not be without
interactions with the environment - it may not even be possible to clearly separate the environ-
ment from the computing system in the future (see the argument by Brooks [1991] below). In
his Turing Award lecture, Milner [1993] presented models of interaction as complementary to
the closed-box computation of Turing machines, and argues that a new conceptual framework
is needed to move from sequential computing to interactive and concurrent computing. While
working on concurrent computing, Milner developed such a framework for interaction in the
form of a calculus for communicating systems (CCS) and, later, the π-calculus. Milner [2006]
later argued that computer science has now grown into informatics, which primarily deals with
interactive systems, rather than with sequential computation, and requires a new logic of in-
teraction. In similar spirit, Wegner [1997] argues that interaction is strictly more powerful than
non-interactive algorithms, because Turing machines cannot handle the passage of time nor

Deliverable D1.1 24 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

can they model the arrival of events during a computation. Even in the Interactive Turing Ma-
chine [van Leeuwen and Wiedermann, 2001], the machine can either process or receive input,
but not both at the same time. This is entirely different from event-based, asynchronous, mas-
sively parallel computation as we find it in neuromorphic hardware. Wegner and Goldin [2003]
argue for a paradigm shift in computer science to move from sequential algorithms to interactive
systems that are firmly embedded in their environment. Brooks [1991] makes the argument that
algorithms alone are not sufficient to build intelligent system - interaction is also needed:

Real computational systems are not rational agents that take inputs, compute logi-
cally, and produce outputs. . . It is hard to draw the line at what is intelligence and
what is environmental interaction. In a sense, it does not really matter which is
which, as all intelligent systems must be situated in some world or other if they are
to be useful entities.

Similar to the interactiveness that is needed to expand pure algorithms to interactive algorithms,
Valiant [2013] coins the term ecorithm to describe algorithms that interact with the environment
and adapt to it in a way that modifies their behavior in ways that may not be anticipated by the
human programmer. Such ecorithms are already all around us in the form of learning algo-
rithms or evolutionary algorithms. Such ecorithms get to the core of this blurred line between
intelligence and environmental interaction that Brooks [1991] argues for. These are also the
kind of algorithms which Karpathy [2017] collectively refers to as "Software 2.0", where much
of the programming work shifts to the collecting, cleaning and maintaining of a good dataset (or
environment, in a non-supervised learning setting).

Until now, we have only discussed single algorithms; pure algorithms, interactive algorithms,
and ecorithms which adapt to the environment. But in reality, all these algorithms work together
in a complex system of interacting software (where software refers to the collection of all kinds
of algorithms that are implemented and run). Such a software system can consist of millions
of lines of code - but that is still not enough to fully characterize the system and its complexity
since it can also interact with other software systems, as well as with human and non-human
users. Booch [2011] asserts that such complex software systems are among the most complex
artefacts ever created. Furthermore, Booch [2011] uses the term "software-intensive systems"
to highlight that such systems are not composed solely of software but also include the under-
lying hardware on which the software is run.

It shall be noted that this discussion about programs is deeply rooted in the paradigm of dig-
ital computing, which manifests itself in various ways. Most notably, we have disregarded the
physical aspects of the computing system entirely, i.e. what a computer scientist would refer
to as "hardware". This separation of a computer into hardware and software is a fiction that
is immensely useful in practice - it allowed the separate development of the two disciplines
of "hardware engineering", which builds ever more powerful computing devices, and "software
engineering", which builds ever more expressive software systems "on top of" the hardware.
However, it is important to view this hardware-software as what it is - a pragmatic distinction -
without giving it more ontological significance than it has: there is no clear separation between
the two domains. A systems programmer who works with machine language will consider much
of the circuitry as hardware, whereas an application programmer who works with a high-level
programming language will consider machine language and a significant part of the operat-
ing system (e.g. memory management, scheduling) itself as hardware. In an unconventional
computing setting, where the fiction of a computer that is made up of separate hardware and
software cannot be maintained, we will need to come up with new concepts for programming.
This will be discussed later on in this section.

Deliverable D1.1 25 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

To summarize the terminology introduced in this section, we will use algorithms interchange-
ably with pure functions to refer to those functions that are efficiently computable on a Turing
machine, which corresponds with pure functions as defined in functional programming. We
will use programs interchangeably with interactive algorithms or impure functions to refer to
functions that allow for side effects through the environment and/or interaction with other pro-
grams. We will also use the term ecorithms or learning algorithm to highlight those interactive
algorithms that learn from, or adapt to, their environment. Finally, we will use the term software
system to refer to collections of programs that work together in a system.

3.5.4 Programming concepts

From Figure 1, it appears that programming is the act of coming up with a program that satisfies
some intention with no regard for how that program is found. This is a rather general notion of
programming which goes beyond the notion that is typically associated with the term.

In common parlance, programming refers to the process in which a human programmer de-
signs and implements a program or software system. Job titles have emerged for programmers
that work on different types of programs (as introduced in the previous section): algorithm
designers typically work with pure functions, programmers typically work on programs (i.e. in-
teractive algorithms), while software engineers work on software systems. More specialized
job titles have also emerged, e.g. machine learning engineers that are focused on working with
learning algorithms.

However, as shown in Figure 1, programming need not be done by a human programmer (or
designer, or engineer). As shown by the blue arrows in the diagram, programming can also be
automated in various different ways. In such a setting, it is a computer program that generates
the desired program. This has been called automated programming or meta-programming and
even machine learning or optimization methods can be considered in this setting.

While there is a clear delineation between computable and uncomputable functions, and a
(slightly less) clear delineation between tractable and intractable algorithms, there is no clear
delineation between what can be programmed and what cannot. However, it is natural to
start our discussion by asking for the ultimate limits of what can and what cannot be pro-
grammed.

We begin by restricting the conversation to algorithms, i.e. pure functions, as defined in the
previous section. The question is: what algorithms can be programmed? Of course, every
computable algorithm is programmable in the trivial sense in that it exists, and therefore can
be found, in principle. However, the discovery of algorithms is a tedious and difficult process.
Books and journals from theoretical computer science have been filled with discoveries of new
algorithms that outperform existing ones. Important questions about the very foundation of

computer science and mathematics, such as the famous P =? NP problem, would be solved
by the discovery of an algorithm that can solve an NP-complete problem in polynomial time.
However, despite decades of research, no such algorithm has been found - and, worse yet,
nobody has been able to proof the existence (or non-existence) of such an algorithm.

A straightforward procedure would be to simply search the space of all possible algorithms
(using some enumeration scheme, similar to the one proposed by Turing [1936]), simulate
each one on a universal machine and determine whether or not it solves the given problem,
e.g. the NP-complete traveling salesman problem. The problem with this simple procedure,
and any other such meta-programming procedure based on exhaustive search, is that it is

Deliverable D1.1 26 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

not only intractable but formally undecidable because it involves determining whether or not
a given algorithm terminates - and this is the famous halting problem which Turing proved to
be undecidable. If we restrict the computational universe to only those programs that provably
terminate, the search procedure does become computable. The problem is, of course, that
we cannot construct the set of all programs that terminate without, again, solving the halting
problem.

Accepting the hopelessness of such an exhaustive search over all algorithms, we may turn to
the more practical question of what algorithms a human programmer can program. A formal
discussion is not possible without a full understanding of the cognitive abilities (and limits) of
humans - and while philosophers and cognitive scientists are in the process of working this
out, we may not want to hold our breath while waiting for their results. It is clear that a human
programmer can only navigate a subset of all possible algorithms. While not a formal proof,
this becomes quite evident to whoever has tried to compile and decompile a computer program
in some high-level programming language - this results in obfuscated code that is difficult or
simply impossible for a human programmer to fully understand. Similarly, attempts to fully
understand the inner workings of an artificial neural network have failed (though it must be
said that they have yielded some very interesting and useful insights). This should serve as
an empirical justification for the claim that not every algorithm is effectively programmable by
a human programmer. Avižienis [1983] shows that as programs become large and complex,
it is inevitable that they be in some measure incorrect. Conrad [1988] further argues that non-
programmable systems are more efficient than those that are programmable (by humans),
leading to a tradeoff between efficiency and understandability/programmability of algorithms (or
systems).

Machine learning has found a different solution to this problem. By giving up the exhaustiveness
of the search, we can restrict the search space to only those programs of some fixed structure
of which we know that they terminate (after some maximum number of computational steps),
and we can attempt to find the algorithm in this search space which best approximates the
desired algorithm. By using some universal approximator, such as an artificial neural network
(ANN), we can define a set of algorithms, i.e. the set of all ANNs of a certain size, and search
the space of all algorithms in this set, i.e. by tuning the network weights of the ANNs.

Many nature-inspired algorithms, including those that take inspiration from the brain or human
cognition, have been found by nature through evolution, and we have tried to program such
algorithms ourselves in the traditional, manual, way. The effort it takes to program such sys-
tems has been repeatedly underestimated, and recently the methods of machine learning have
surpassed the programming abilities of human programmers in tasks like playing chess, Go, or
video games [Silver et al., 2018]).

It may simply be that our current (manual) programming methods and languages are not well-
suited to the tasks to which we ascribe some level of intelligence. We shall continue this
discussion in Section 3.5.7.

To summarize, we can conclude that there are many different ways to come up with a computer
program, and while there may not be a correct way to program, there are certainly more suitable
ways to program certain classes of programs. While a low-level programming language is very
effective for writing numerical computation routines, it is decidedly less effective for writing a
procedure to recognize faces in images. A facial recognition program can certainly be written
in assembly language, but it will be more efficient to use Tensorflow to train a neural network
to recognize faces using a labeled dataset. It is possible to think about how to setup the rule of
a 2D cellular automaton to solve the one-dimensional density classification task with ρc = 0.5,

Deliverable D1.1 27 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

but it may be better or easier to find that rule with a genetic algorithm, as shown by Mitchell
et al. [1994].

It is worth pointing out that programming need not be purely a software matter. Programming
is never done in isolation from the hardware. It is true that conventional computers can be pro-
grammed without thinking about the exact hardware that the program will be executed on, but
this only shows that conventional computers are programmed with this hardware model implic-
itly assumed. The hardware/software divide has no ontological significance other than being
useful in practice [Moor, 1978]. The Turing-equivalence between hardware and programming
language is a luxury that does not necessarily extend to unconventional computers, so we will
need to consider programming as co-developing hardware and software. While this does add
complexity from the hardware into the programming process, it also enables us to come up with
novel programming paradigms and solutions that are not possible or tractable on conventional
computers [Hooker, 2020].

In the following section, we will discuss programming concepts in a situation when the separa-
tion between hardware and software is less clear.

3.5.5 Blurring the hardware/software separation

Instead of directly rushing into the full diversity of unconventional computing, we may wish to
gradually ease into this wilderness. The field-programmable gate array (FPGA) provides a
very useful case study for our purposes. As a reconfigurable hardware system, it blurs the
line between hardware and software, leading to a re-interpretation of existing concepts as well
as entirely new concepts. However, it is still a fully digital device implemented in standard
CMOS technology that works with a global clock for synchronous operation (mixed signal or
even analog integrations of FPGAs exist, but we will ignore these in the current section). As
such, it "shields" us from the complexity of asynchronous, multiple-timescale dynamics, as well
as from analog behavior and other physical effects that make it difficult (or impossible) to use
the symbolic description that digital circuit blocks allow.

FPGAs contain programmable logic blocks and a hierarchy of interconnects that allow blocks
to be wired together. These interconnects are reconfigurable, allowing the FPGA to change its
architecture and dataflow. This makes FPGAs a natural choice for parallel computing applica-
tions. Usually, memory elements are included in the logic blocks which enable them to perform
not only logic gates but also sequential logic (i.e. finite-state machines).

We begin by taking a look at some of the concepts that are involved in the "programming" of an
FPGA. Note that this is not meant to be a comprehensive introduction or explanation of FPGAs
but instead serves only as a rough outline of the steps involved in working with reconfigurable
hardware:

1) Circuit/hardware design Of course, the FPGA chip must itself first be designed and manu-
factured. This happens through the well-developed design process of integrated circuits.
At this stage, the scope and limits of the FPGA are fixed, such as the number of logic
gates and memory elements, as well as the clock speed and other characteristics.

2) Configuration design The FPGA is configured through a design written in a hardware de-
scription language (HDL) or as a schematic design. The schematic design is easier to
visualize, whereas the HDL makes it easier to work with large designs through the nest-
ing of functionality - similar to the functional abstraction in conventional programming
languages. The design abstraction that is used in HDLs is called the register-transfer

Deliverable D1.1 28 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

level (RTL) and models synchronous digital circuits in terms of the data transfer between
hardware registers and the logical operations performed on these signals. This is a level
of abstraction higher than the gate-level description.

3) Synthesis The design/configuration of the FPGA is passed through a logic synthesis pro-
gram (an electronic design automation tool) which yields a netlist (a description of the in-
terconnects on the FPGA). Recently, the level of abstraction has been raised (cf. Section
3.5.1) by so-called high-level synthesis programs, which take a behavioral specification of
the system (in a language like C), transcompile this code into a HDL and then synthesize
this to a netlist, using a logic synthesis program. This allows designers to work at an
algorithmic level, which is higher than the register-transfer level (RTL) used by HDLs.

4) Configuration The actual configuration of the FPGA happens through a so-called place-
and-route process, which is usually performed by the FPGA manufacturer’s proprietary
software. After verifying and validating place and route results, a binary file is generated
which is transferred to the FPGA and then used to reconfigure the FPGA.

Steps 2-4 are also often lumped together and called "FPGA programming". However, the dif-
ference between (software) programming and FPGA programming should be evident from this
description. Much research on FPGAs has focused on figuring out how to make the program-
ming easier and more efficient, inspired by the great simplicity with which digital CPUs can be
programmed. The tools that work for conventional programming do not work in situations where
the hardware cannot be cleanly abstracted away from the software. Naturally, it can also be ar-
gued that the field still needs more time to develop effective methods for programming FPGAs
- digital general-purpose computing has had decades to develop such effective programming
methods.

3.5.6 Unconventional programming

The present section aims to give a (necessarily incomplete) overview of methods for program-
ming unconventional computers. There is no clear separation between "conventional" and
"unconventional" computers. Instead, we perceive computers as existing on a spectrum of
(un)conventionality, where on one end we find the CPU and move past the GPU, FPGAs to-
wards more unconventional devices like digital neuromorphic accelerators (e.g. Loihi [Davies
et al., 2018]), analog neuromorphic computers (e.g. Dynap-se [Moradi et al., 2018]), pho-
tonic reservoir computers [Duport et al., 2012] and even more exotic devices, like the Dopant
Processing Unit [Ruiz-Euler et al., 2020] or the Physarum Machine [Adamatzky, 2007]. Nat-
urally, the "more unconventional" computers will require "more unconventional" programming
paradigms in order to harness their full computational potential.

The idea of exploiting this inherent computational potential of computers in unconventional
substrates has been phrased as a "natural" way of programming [Stepney, 2012], the "pro-
gramming" of non-programmable systems [Grünert, 2017], adaptive programming [Lawson and
Wolpert, 2006], or simply: unconventional programming paradigms [Banâtre et al., 2005].

We identify a list of proposed methods and paradigms for programming:

Human programming As already mentioned, the "standard" approach for programming con-
ventional CPUs is to have a human programmer design the software manually (cf. Section
3.5.4). The exact methods that are used by a human programmer to come up with a pro-
gram are not clear, but it seems to require a certain level of modularity and composability
of the program (in the sense of hierarchical systems, cf. [Simon, 1991]), in order for

Deliverable D1.1 29 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

s

a human programmer to understand and reason about the program - though this may
be more a reflection of programming language design [Dijkstra, 1968] than of a human
programmer’s cognitive abilities.

Standard programming paradigms Three different programming paradigms have emerged
as "standard" and are taught to every computer science student. The first and arguably
most common and dominant paradigm is that of imperative programming. In imperative
programming, a list of commands is executed sequentially to change the state of the com-
puter in order to achieve some goal. As such, an imperative program can be compared
to a recipe which describes how something is done, through a sequence of imperatives.
In contrast, declarative programming describes what the program should do, without de-
scribing the control flow. Finally, object-oriented programming (OOP) has already been
mentioned and describes a programming paradigm that is centered on the notion of ob-
jects, which contain data (called attributes of the object) and procedures (called methods
of the object). This is a form of structured programming, which aims to increase the
clarity and quality of code and is used as an essential tool to manage the complexity of
large-scale software systems.

Parallel programming With the advent of multi-core microprocessors came the need to use
these resources simultaneously. This led to the development of parallel programming
techniques, in which multiple processes are carried out simultaneously. Some programs
are naturally parallelizable, these are called embarassingly parallel, whereas others are
harder or even impossible to parallelize because of dependencies due to their sequential
nature. Amdahl’s law [Amdahl, 1967] gives an equation for the possible speedup of a
program through parallelization:

1
Slatency(s) =

1 − p + p

where Slatency is the potential speedup of the latency of the entire task, s is the speedup
in latency of the execution of the parallelizable part of the task, and p is the percentage of
the execution time of the whole task concerning the parallelizable part of the task before
parallelization. Most tasks do not achieve a linear speedup but only a near-linear speedup
for small numbers of parallel processing elements, which flattens out for larger numbers
of parallel processing elements.

Concurrent programming Concurrent systems describe any system in which the lifetime of
multiple computing processes overlap - the computation itself must not necessarily hap-
pen at the same instant (as in parallel computing). Moreover, concurrent systems can
(but need not) be spread out in space, either on the same chip (different cores), or across
different chips, or even across different computers communicating over a network. Con-
current computing introduces many problems that do not exist in parallel computing, and
process calculi have been developed to model and reason about the behavior of concur-
rent systems.

Meta-programming Meta-programming is a technique in which one program (the meta-program)
treats other programs as data. In this way, the meta-program is able to "program" another
program. An example is program synthesis, in which a program is generated from a
specification (cf. Figure 1). When such a specification is complete, it is called "deductive"
program synthesis, but methods for the synthesis of programs from incomplete specifi-
cations (e.g. constraints or input-output examples) have also been developed under the
name inductive programming (or program induction, inductive program synthesis).

Deliverable D1.1 30 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Lake et al. [2015] proposed an inductive programming approach coupled with probabilis-
tic programs as a model for human-level concept learning. According to Gulwani et al.
[2017], program synthesis has been considered the holy grail of AI since its inception in
the 1950s. Recently, deep learning has also been applied to this task under the name
neural program learning [Devlin et al., 2017] or synthesis [Kant, 2018, Sun et al., 2018],
urging the development of large-scale dataset to train these data-hungry models [Alet
et al., 2021].

Reflective programming Reflective programming is a form of meta-programming in which a
program has access to its own source code, both for introspection and for self-modification.

Natural language programming In natural language programming, the computer is programmed
through natural language, e.g. English. Such systems are usually assisted by an ontol-
ogy in the form of a knowledge base.
This approach to move from formal programming languages towards natural language
has been criticized by Dijkstra [1979], who argued that natural language introduces un-
wanted ambiguity while formal languages provide the luxury of making it easier to think
clearly and avoid logical fallacies and concludes that "machines to be programmed in our
native tongues [...] are as damned difficult to make as they would be to use".
Evidently, computer science has not replaced formal programming languages with natu-
ral language programming, but the methods of natural language programming have still
found applications in some restricted domains. Wolfram Alpha, a computational engine,
accepts natural language queries, converts these into formal programs in their Wolfram
language, and then runs this code. Desai et al. [2016] combined natural language pro-
gramming with program synthesis for a system that is able to produce programming ex-
pressions in a specific target language from natural language input.

Evolutionary programming Evolutionary algorithms are population-based optimization algo-
rithms that can be used to generate computer programs. A standard way to set this up
in order to find a program that solves some problem is to define a fitness function that
is maximized by a program that solves this problem. Ideally, the fitness function should
increase gradually for programs that are closer to the correct solution. Then, a population
of (random) programs is generated and in each generation, the population is changed to
keep only the k best programs and somehow generate new programs from these k best
ones, e.g. through mutation (random variation) or cross-over (combination of existing pro-
grams).
Evolutionary algorithms have been used to generate rules for a cellular automaton to
solve computational problems that are difficult to solve by manually designing a learning
rule [Mitchell et al., 1994]. In an unconventional computing setting, evolutionary methods
have been used to "program" nanoparticle clusters to perform Boolean functions [Bose
et al., 2015].

Probabilistic programming Probabilistic programming reflects the merging of general-purpose
programming with probabilistic modeling. A probabilistic program specifies a probabilistic
model, e.g. a Bayesian network, and uses a general-purpose inference scheme to solve
the problem. Probabilistic programs extend conventional imperative programs with 1) the
ability to draw random values from a distribution and 2) the ability to condition values of
variables in a program through observations [Gordon et al., 2014].
Kulkarni et al. [2015] designed a probabilistic programming language for vision that can
express complex generative vision models. Some of these programs outperform the
state-of-the-art in computer vision with programs that are less than 50 lines long.

Deliverable D1.1 31 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Machine learning Machine learning has already briefly been described, and while a thorough

treatment is out of scope for our purposes, we identify the key idea as learning a machine
learning model which represents a program, in the form of an input-output mapping from
given input-output examples (supervised learning), or a behavior that is learned from
some reward signal in an environment (reinforcement learning).

Differentiable programming In differential programming, programs are written in a way that
they are fully differentiable with respect to some loss function. Differentiable program-
ming has been employed to merge deep learning with physics engines in robotics [De-
grave et al., 2019], has been applied to scientific computing [Innes et al., 2019], and even
towards a fully differentiable Neural Turing Machine model [Graves et al., 2014].

Deep learning Deep learning is essentially a subset of differential programming in which the
programs are artificial neural networks (ANNs). The architecture (topology) of such an
ANN is usually fixed and then the weights are modified through gradient descent, where
the gradients are computed by the backpropagation algorithm. This has been an im-
mensely powerful and successful approach, and much of the current momentum in artifi-
cial intelligence and neuromorphic computing is due to deep learning.

(Physical) reservoir computing Reservoir computing is a technique that has emerged out of
work on Echo State Networks (ESNs) [Jaeger, 2001] and Liquid State Machines [Maass
et al., 2002]. ESNs are recurrent artificial neural networks in which the hidden units,
called the reservoir, are randomly connected and only the output weights are trained via
a linear regression technique. Therefore the computation is happening in the reservoir,
giving these methods the name of reservoir computing. Because of the random, poten-
tially unknown connections within the reservoir, this model has been widely used in the
unconventional computing community to model the computation in unconventional, yet
high-dimensional, nonlinear and complex substrates [Tanaka et al., 2019]. It is also one
of the leading computational paradigms in the Post-Digital project, and multiple ESRs are
working on experimental setups - electronic, opto-electronic or fully optic - that are using
this reservoir computing paradigm.

Dataflow programming In dataflow programming, a program is represented as a directed
graph that models how the data flows between operations. As such, it is close to the
engineering discipline of signal processing. This can be extended naturally to the dataflow
computer architecture, an unclocked and non-deterministic computer architecture in which
data is processed at each processing node as soon as it is available. Due to the un-
clocked, non-deterministic, event-driven (where events are the availability of data at a
processing node) computation in this paradigm, we identify this as a promising paradigm
for unconventional computing.
Moreover, dataflow programming is closely connected to stream processing where (po-
tentially real-time) data can be processed in parallel by multiple processing units, e.g. in
GPUs or FPGAs. Furthermore, it connects to the ideas of spatial programming [Becker
et al., 2016] where the dataflow structure is fixed and then used in a spatial arrangement
that is reflected in the computer’s architecture, and space-time programming [Beal and
Viroli, 2015] which is way of aggregate programming for the control of large networks of
spatially embedded computing devices.
A classical formalism which may serve as a tool for the design and analysis of dataflow
programs is Petri nets [Petri, 1962]. Petri nets are a general, graph-based formalism
which can model many sorts event-driven, concurrent processes, not only parallel un-
clocked computer programs but also real-world systems like production processes in fac-
tories.

Deliverable D1.1 32 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Control engineering In analog computing, the dynamics of the computer are usually de-

scribed through differential equations. In order to program such a computer, it is more
natural to think in terms of control theory, which has developed a rich repertoire of meth-
ods to drive a dynamical system into a mode of operation that is robust, stable, and im-
plements the desired dynamics. As such, when working with analog computer systems,
we may benefit greatly from tapping in to the knowledge on control theory that has been
accumulated over the past century. A promising avenue is represented by data-driven
control, in which a model of the system to be controlled is learned from experimental data
using machine learning techniques.

Neural engineering Control theory has been used as the formalism of choice for the neural
engineering framework by Eliasmith [2005]. In this framework, high-level specifications
in the language of dynamical systems can be designed into networks of neurons and
compiled down to mixed-signal spiking neuromorphic accelerators like Braindrop [Neckar
et al., 2019], using the Nengo programming environment [Bekolay et al., 2014].

Neuromorphic engineering / signal processing and circuit design A standard approach in
neuromorphic engineering, as envisioned by Mead [1990], is to design application-specific
microchips using sub-threshold analog CMOS technology for specific tasks, for example
for tactile perception [Mastella and Chicca, 2021]. This approach uses tools from signal
processing and control engineering, as well as computational neuroscience to implement
a desired behavior in networks of spiking neurons.

Neuromorphic synthesis Neftci et al. [2013] developed a new approach that they call synthe-
sizing cognition in order to automatically map the function of a finite state machine onto
an abstract layer which models the unreliable hardware system (in this case an analog
neuromorphic chip). They demonstrate their approach on a real-time context-dependent
visual classification task. They provide a systematic way of synthesizing simple high-level
behavior into a noisy, imprecise neuromorphic chip. This approach tackles, and solves,
many of the issues that have been mentioned in this report: noise (cf. Section 3.3), robust-
ness (cf. Section 3.4), multiple-timescale dynamics (cf. Section 3.2), and mixed-signal
processing (cf. Section 3.1).

Reservoir transfer A similar problem was solved in a different way by He et al. [2019]. In
order to circumvent the limited observability of their analog spiking neuromorphic hard-
ware which makes training very difficult (and impossible on-chip), they trained a network
of spiking neurons in software and developed a method that they call reservoir transfer
to transfer the properties of this well-functioning software reservoir onto their hardware.
They solve issues of device mismatch, multiple timescales and noise in their analog hard-
ware and demonstrate their approach with an ECG hearbeat abnormality detector using
the reservoir transfer method.

Neuromorphic compilation hierarchy Zhang et al. [2020] propose a more general framework
in order to raise the level of abstraction for neuromorphic computing. They propose a
compilation hierarchy that includes some approximations in order to compile high-level
descriptions of neural networks into a variety of different spiking neuromorphic systems.

Quantum programming A quantum computer can be programmed in various ways, but a
dominant approach taken by leaders in the quantum computing industry is to work with
the quantum circuit model. This has lead to the development of frameworks like Qiskit
[Treinish et al., 2021] that enables developers to write quantum programs in conventional
programming languages like Python. The program is written by designing a quantum
circuit in which quantum operators are represented as gates acting on the input qubits,

Deliverable D1.1 33 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

after which a measurement collapses the quantum state into a single bit for each qubit.
Commonly, this procedure is repeated multiple times to generate a histogram of output
patterns, similar to classical randomized algorithms. Given the young age of quantum
computers and the non-existence of large-scale quantum computers at this point, it makes
sense that quantum computers are programmed on a circuit level. Raising the level of
abstraction in quantum programming is an active area of research [Bichsel et al., 2020].

Holographic algorithms Valiant [2008] introduced the concept of holographic algorithms and
defines them as algorithms that are derived through the concept of holographic reduction
from one problem to another. The reduction of a problem A to another problem B is a
widely-used concept in computer science: for example, a Boolean satisfiability problem
can be reduced to a graph theoretical problem through a one-to-one mapping every way
of satisfying the Boolean formula to some solution of the graph theoretical problem. In this
way, the solution of problem B will directly yield a solution to problem A. In a holographic
reduction, instead of a one-to-one mapping only a many-to-many mapping needs to be
identifiable, i.e. the sum of the solution fragments to one problem maps to the sum of
solution fragments to another problem. Valiant [2008] is able to derive such holographic
algorithms that run in polynomial time to solve problems that were previously only solvable
in exponential time.

Amorphous computing Amorphous computing [Abelson et al., 2000] is trying to fill the gap
between the construction and the programming techniques required of systems which do
not adhere to the strict precision requirements of digital computer chips.

Emergent programming Emergent programming is the automated assembling of instructions
of a programming language using mechanisms which are not explicitly informed of the
program to be created [Georgé et al., 2005], by using methods from adaptive multi-agent
systems and relying on AMAS theory of cooperative self-organization [Gleizes et al.,
1999].

Autonomic computing The goal of autonomic computing is to design systems that are able
to adapt themselves in order to stay within a high-level description of desired behavior
[Parashar and Hariri, 2005]. The field takes inspiration from the autonomic nervous sys-
tem, which is able to stay within a stable "dynamic equilibrium" without global top-down
control.

3.5.7 Critical gaps

In this section, we have investigated programming in a more general way than is usual in com-
puter science. We have identified some programming paradigms that are particularly promising
for unconventional computers, e.g. reservoir computing, program synthesis and induction, evo-
lutionary computing, dataflow programming, neural engineering, and amorphous computing.
In order to define a clear programming language for novel computing devices, we must first
develop a formalism to describe computation that goes beyond the prevalent theory of digital
computation. It is clear that everything that needs to be considered in a generalized theory
of computing which includes unconventional computers must also be considered in such for-
malisms and methods for programming.

In addition to a formalism or language to describe unconventional computing, a number of
critical gaps can be identified which necessitate further research before effective programming
tools for unconventional computers can be developed. These gaps may only be possible to
bridge with unifying formalisms, but practical solutions in specialized cases may precede such

Deliverable D1.1 34 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

a unification. We present three of these issues that we perceive as critical gaps in programming
unconventional computers.

The physics/computing gap. Digital computers are programmable because we build them to
be programmable, and we build them according to our digital theory of computation. As such,
we have bi-stable circuit elements that can be switched at our will (and only at our will) and that
are organized in complex architectures to enable us to specify complex behavior. In unconven-
tional computers that exploit interesting physical effects for computation, the situation may well
be reversed: instead of enforcing our theory of computation onto the material, the material will
have a fixed physical behavior that we will attempt to exploit for our computation.

This presents the problem of aligning our models of physical behavior with our models of com-
putation. Currently, the two are incompatible because they are using completely different for-
malisms: physics is usually described in the language of continuous-time dynamical systems
whereas computer science is described in the language of logic, where no reference to real
(physical) time exists (cf. Jaeger [2021] for a more detailed discussion). Analog computing
(cf. Section 3.1) presents a promising opportunity here because analog computers are often
described using the same formalisms that we use for physics.

Through a common language to talk about physics and computing, we may be able to match
material effects to computational primitives or material structures to computational architectures
- or more loosely, to match material properties to categories of computational problems that are
well-suited to be computed in such a material.

The local/global gap. Programming a software system can be seen as a methodological
bridge between the local behavior of individual components and the global behavior of the sys-
tem as a whole. Digital computing has developed a powerful abstraction hierarchy to bridge the
gap between local behavior, in the form of computational primitives that are implemented di-
rectly in the hardware through logic gates, and global behavior, i.e. the behavior of the software
system as a whole.

Such a setup in which individual components are interacting with one another in a structured
way to give rise to an organic whole with some behavior leads to what Weaver [1948] calls
organized complexity and we are currently lacking the right tools or formalisms to analyze such
complexity in general. This is one of the things that a general mathematical theory of compu-
tation, as outlined in Section 3.8, must provide. In digital computing, a number of techniques
have been developed to manage the complexity that arises in software systems. Note that
much of this complexity is (almost) entirely disconnected from the physical details of the com-
puter. These techniques are briefly outlined below.

When working on a single program, programming languages provide a powerful hierarchy of
abstractions that allows a programmer to work on a high-level, close to the behavioral descrip-
tion of the program, neglecting many practical details that are essential for the implementa-
tion. Programming language abstraction and a compilation hierarchy to increasingly low-level
languages removed the need to specify details about memory management, process manage-
ment, scheduling, and other "low-level" details. Functional abstraction makes it possible to raise
the level of abstraction by re-using existing procedures within new procedures. With just one
line of code, it is possible to import a library that provides an entire collection of well-optimized
code to do anything, from numerical operations all the way to training deep neural networks.
Data abstraction makes it possible for a programmer to use abstract data types to represent
numbers, or complex composite data types without worrying about the technical details about
how this data type actually translates into the memory allocation on the register-level.

Deliverable D1.1 35 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Moving on to more complex software systems, powerful programming paradigms and design
patterns have been developed to manage the system’s complexity. As an example, the object-
oriented programming paradigm has been developed to structure code in objects, which interact
with each other only in pre-defined ways, thereby effectively managing the complexity of inter-
actions that can take place in such a software system. This is done through information hiding,
whereby the internal details of an object is hidden to the outside and only "public" methods and
attributes of the object are visible (where the visibility can also be further categorized depending
on "who" is "looking"). An example for a design pattern is the Model, View, Controller (MVC)
design pattern for programs with a user interface. In this pattern, the program is divided into
three interconnected parts: the Model contains the application’s data structure which is read by
the View to display this data to the user. The interaction of the user with the View is handled by
the Controller, which then manipulates the data in the Model according to the user interaction.
This design pattern increases the modularity of the code and thereby decreases the complexity
of the overall system in practice.

Moving towards interacting software systems, we can take the example of concurrent systems.
Concurrent systems describe any system in which the lifetime of multiple computing processes
overlap - the computation itself must not necessarily happen at the same instant (as in parallel
computing). Moreover, concurrent systems can (but need not) be spread out in space, either
on the same chip (different cores), or across different chips, or even across different computers
communicating over a network. Concurrent computing introduces many problems that do not
exist in parallel computing, and process calculi have been developed to model and reason
about the behavior of concurrent systems.

All of the above-mentioned methods have been developed to manage the complexity of soft-
ware systems in order to enable reasoning about the system’s behavior as a whole, including
all of its parts. This enables the top-down design of software systems by specifying the global
behavior, then incrementally moving towards local programs. A standard exercise in a job in-
terview for a software engineering role concerns the design of a software system, e.g. how
to design a real-time messaging platform. The design may start with the desired user-facing
behavior, to provide a user interface through which users can send and receive messages.
This requires a program running on the user’s computer where the View (assuming the MVC
design pattern mentioned above) allows to type and read messages. Upon pressing the send
button, the program’s Controller will then establish a networked connection the server and send
the typed message, as read from the Model, to the server. The server receives this informa-
tion, saves it into a database, determines the address to which this information needs to be
sent. The receiver, whose Controller is continually pinging the server to see if new relevant
information has been uploaded to the database, will see the new message and display it to
the user. From this high-level design sketch, a software engineer will be able to implement the
system.

In unconventional computing, it is currently not possible in general to design complex systems in
the same top-down manner. However, some approaches do exist and the problem of controlling
or designing global behavior from local interactions and programs is investigated in different
forms in various disciplines: in robotics as emergent cognition, in logic and computer science
as multi-agent systems, in various disciplines as agent-based modeling, in cognitive science
and artificial intelligence as swarm intelligence, in machine learning as distributed or federated
learning, and in complex systems research as the broad topic of emergence. More concretely,
the Neural Engineering Framework by Eliasmith [2005] has been used with a software tool
called Nengo to automatically compile high-level descriptions of control systems [Bekolay et al.,
2014] to build large-scale brain models [Eliasmith et al., 2012b].

Deliverable D1.1 36 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Leaky abstractions The concept of abstraction has already been introduced above. In short,
an abstraction is a mechanism by which implementation details of a component are hidden
away and replaced by a simpler interface of this component. This is the key mechanism by
which complexity is built and managed in complex computer systems. It enables designers to
easily jump between different levels of description with varying degrees of details by creating
a hierarchy in which the bottom-most layer is a full description of the entire system and further
layers iteratively create modules, or sub-systems, which interact with one another through pre-
determined interfaces.

However, in many complex systems, such abstractions can begin to fail and leak details about
its implementations that were supposed to be abstracted (hidden) away. This is then said to
be a leaky abstraction [Spolsky, 2004]. In the case of a leaky abstraction, the designer must
still know the underlying implementation of the component in order to guarantee the reliability
of any system using this component. Leaky abstractions are a common source of unexpected
behavior in complex software projects.

This is reminiscent of the difference between decomposable systems and nearly decomposable
systems as proposed by Simon [1991]. In hierarchical systems, the interactions between sub-
systems can be clearly distinguished from the interactions within individual sub-systems. In a
decomposable system, we can treat the individual sub-systems as independent from another.
In a nearly decomposable system, we can identify sub-systems but the interactions between
these sub-systems are not negligible - information is leaking between sub-systems.

In many unconventional hardware systems, we will have components that can only be ab-
stracted in a leaky way. This may be because the component offers only limited observability
(as in the case of the Dynap-SE2 chip that ESR1 is working with), or because the components
are of a stochastic nature. It is necessary to develop programming methods that can deal with
such leaky abstractions.

Zhang et al. [2020] incorporate a form of this in their neuromorphic compilation hierarchy.
Whereas the compilation of a digital computer program is deterministic and yields a well-defined
lower-level program which is exactly equivalent to the higher-level program, their "neuromorphic
compiler" turns a high-level description of the neuromorphic program (a neural network) into a
control-flow graph that is only approximately equal to the high-level description.

A key difference between digital computing and unconventional computing may be seen in the
"cleanliness" of the abstractions that are possible. Whereas the interactions of digital soft-
ware systems can be controlled precisely, as illustrated above, the same cannot be said in
unconventional computing systems. In the words of Simon [1991], the digital software sys-
tem presents itself as a cleanly decomposable hierarchy because all interactions between the
different submodules of the systems can be fully characterized and controlled. In contrast, a
similar unconventional system would present a nearly decomposable hierarchy (if it is decom-
posable at all!), because the interactions between its different submodules cannot always be
fully controlled.

3.6 Information and representation in cognitive systems

To build cognitive agents, relevant information about the world needs to be represented in the
system for it to behave appropriately. The meaning of “information” here is broader, more
complex, and less quantifiable than the fundamental measures such as Shannon information
and algorithmic information theory [Cover and Thomas, 2006]. There is no unifying picture al-
ready at hand, different frameworks exist to deal with different aspects of cognition, and their

Deliverable D1.1 37 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

views on information differ. To illustrate this claim, two research areas are presented in this
section: Knowledge Representation and Representation Learning. Each of them illustrates
challenges faced when dealing with information inside a cognitive agent. Knowledge Rep-
resentation tackles the concept of information when reasoning and Representation Learning
when learning.

Knowledge Representation In Artificial Intelligence, Knowledge Representation refers to the
way in which a logical agent interacting with the world accumulates and organizes knowledge
while perceiving and acting. Here information is incorporated into the agent into pieces that
can be combined and recombined to solve new problems. The emphasis is on the task of
reasoning after the extraction of perceived information into the representation language used.
Once a representation language is selected (such as first-order logic), it has a formal definition
of how its representational expressions (syntax) relate to the outside world (semantics). The
complex nature of information in Knowledge Representation can be illustrated by identifying its
main roles [Davis et al., 1993]:

• Surrogate: the information inside the agent is a substitute for the thing present in the
outside world. The constraints set by the representation language allow the agent to
reason over previously acquired information. Thus, information can help to determine
consequences of actions by reasoning instead of acting.

• Selection of the relevant information (often called "Ontological commitments"): all repre-
sentations are imperfect approximations of the outside world. It is necessary to focus on
some aspects of the world, simplify some and neglect others. Selecting the best repre-
sentation needs to be carefully done according to the domain at hand. Multiple strands
of research investigate what information to put in their system to deal with different do-
mains, from the physical world [Forbus, 1988] to the manipulation of scientific diagrams
[Forbus et al., 2011]. One central and still open question is then to what extent can these
different areas of knowledge be unified to solve problems which involve several areas
simultaneously.

• Fragmentary theory of cognition: the way the information is expressed is necessarily in-
fluenced by the cognitive task it is used for. For a logical agent, the design is centered on
logical deduction. Alternatively, for a Reinforcement Learning agent, the design focuses
on how to propagate information from a reward signal. Once the "what for" of informa-
tion is decided, many constraints need to be incorporated. In Logic, a long history of
investigations of valid reasoning converged to the constraint of expressing facts about the
world into a rigorous syntactic language for which a calculus can be applied to derive new
information. As a side effect, information is constrained to be context-independent, unam-
biguous, and cannot capture phenomena that create new types of "things" not reducible
to the old ones (such as evolutionary phenomena where new species emerges).

• Medium for efficient computation: building a cognitive system not only requires specifying
a set of valid rules of inference but also ensuring that they are used efficiently. Making
the reasoning process more efficient is however often not sufficient, the representation
itself needs to be adapted. In this respect, a large effort in Knowledge Representation
concerns the development of different techniques (such as semantic nets and frames) to
organize information in ways that facilitate reasoning.

Representation learning Deep Learning research focuses on extracting information from
raw data (such as pictures) potentially with the help of supervision (such as labeled categories

Deliverable D1.1 38 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

that abstractly characterize the picture). Extracting information means learning an abstract rep-
resentation of the data. While it can be straightforwardly quantified in a supervised task by
monitoring the input/output behavior of a neural network, some research directions (sometimes
grouped around the label "Representation Learning") investigate what makes a good represen-
tation and how to translate it into a learning algorithm [Bengio et al., 2012, Goodfellow et al.,
2016].

First, we can analyze representations through the lens of transfer learning. In this setup, a good
representation is one that makes subsequent learning on another task easier. For instance,
unsupervised pre-training can be analyzed in how it impacts the initialization of a subsequent
supervised learning task by accessing an otherwise inaccessible region of the cost landscape
[Erhan et al., 2010]. It can also enrich the input representation when it is initially poor. One
example is in natural language processing, when one-hot encodings are replaced by word em-
beddings [Mikolov et al., 2013]. More generally, one looks for features that are shared between
tasks, they can be found at the level of input information (e.g low-level features are shared
across vision tasks), or at the level of the output (e.g speech recognition of valid sentences
from very different versions of the same phonemes for different persons).

Another complementary view comes from noting that neural networks distinguish themselves
from other Machine Learning algorithms by using distributed representations. One important
feature is that distributed representations are expressive: their parameters (i.e the weights for
a neural network) are used to characterize many inputs even if they are not directly neighbors
in the input space. This is not the case for non-distributed techniques such as k-means or
decision trees (detail in [Goodfellow et al., 2016, Ch. 15.4]). This overlap between distributed
representation is also critical for transfer and is used to design architectures that share the
transferable features. Experimentally, it is found that this overlap induces a rich similarity space
in which concepts that are close semantically have a close distance [Mikolov et al., 2013], a
property that is absent from purely symbolic representation.

Finally, because of the statistical nature of Representation Learning, learning to do predictions
based on observed data requires to make assumptions about the data-generating process (this
point is formalized by the no-free lunch theorem [Wolpert and Macready, 1997]). These prior
assumptions range from generic to specifically designed for the domain or task at hand. One of
the main challenges is to translate them into a relevant learning algorithm. Some examples of
assumptions are the smoothness of the function to learn, hierarchical organization of features,
sparsity, efficient representation of causal relations, temporal and spatial coherence (an exten-
sive list is available in [Bengio et al., 2012], a more speculative and recent list is in [Goyal and
Bengio, 2020]).

3.6.1 Critical gaps

The identified critical gaps are:

Beyond quantitative measures of information The meaning of information in this section
goes beyond a simple quantitative measure. It gets its meaning within a larger theo-
retical framework that captures relations between the information in the system and the
outside world (i.e. the semantics). This aspect seems necessary to build cognitive sys-
tems. It also sets the bar to create a similar framework for cognitive systems based on
dynamical unconventional hardware. [Jaeger, 2021] contains an extensive discussion on
the necessity of semantic accounts of "information" in general theories of computing.

Knowledge transfer Bridging different domains of knowledge is a general challenge across

Deliverable D1.1 39 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

the two presented frameworks. For Representation Learning, it is about learning a rep-
resentation that will help to learn another. For Knowledge Representation, it is about
creating compatible knowledge bases. Interestingly the construction of powerful abstrac-
tion where the two meet is an ongoing subject of research in itself [Mitchell, 2021].

Learning vs Reasoning The two presented frameworks are very different and highlight a fun-
damental difficulty in bridging reasoning and learning together.

3.7 Inspiration from the brain

Brain inspiration is a major argument for the transition from digital to more unconventional hard-
ware [Jaeger, 2021, Indiveri, 2021]. Many different physical phenomena are under scrutiny to
reproduce brain-like phenomena [Marković et al., 2020]. This section discusses how cognitive
science and neuroscience can respectively inform the design of computing devices at the level
of hardware and software.

In the absence of a general theory of unconventional computing, it is not (yet) known how
different phenomena at the substrate level relate to more complex information processing. This
entails that relevant inspiration can be taken from both levels.

We will start by illustrating how we can take inspiration from the way biological brains exploit
and integrate a vast number of biochemical, electrophysiological, and anatomical phenomena.
Some of these effects are already well analyzed and will be presented as basic substrate op-
portunities. They often can be translated into already worked-out algorithms to achieve com-
plex information processing. After this first exposition, we will allude to the daunting number
of brain phenomena that are not well understood and formalized to the point of being useful
for engineering purposes. They can be a source of inspiration both for a general theory of
unconventional computing and to build complex algorithms.

Then we will present how cognitive science can provide landmarks to reach more complex
information processing that goes beyond our engineering abilities.

3.7.1 Neuroscience (hardware inspiration)

Basic substrate opportunities Computational neuroscience offers many ways of modeling
a single neuron, and thus many options for electronic microchip circuit design. There are 3
major classes of neuron models:

• Discrete-time, binary values models emphasize all-or-none activity of neurons (presence
or absence of spike) and the delay between two spikes (the time discretisation reflects
the refractory period). McCulloch and Pitts [1943] showed that it is possible to configure
these neurons to realize logical functions AND, OR, and NOT, and beyond that, general
Boolean circuits and recurrent Boolean systems.

• Discrete models can be made more precise (in terms of biological accuracy) in continuous
time and values using ODEs. They either model the average firing rate of neurons as in
leaky integrator models or the spike itself by either the timing of the spike (e.g. Leaky
Integrator and Firing models) or the specific shape of the membrane potential during the
spike (e.g. the Hodgkin–Huxley model [Hodgkin and Huxley, 1952]).

• Neural fields models have been motivated both by the huge number of neurons in the
brain [Coombes, 2006] and the fact that information is encoded in populations of neurons

Deliverable D1.1 40 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

[Schöner et al., 2015]. In neural fields space is continuous (typically 2-dimensional, corre-
sponding to cortical surfaces) and the activation landscape over this space corresponds
to local average firing activities.

Each of these models can capture a very large number of phenomena. For instance the
Hodgkin-Huxley model is able to reproduce many different kinds of temporal processing in
cortical neurons including tonic spiking, phasic spiking, spike bursting, spike latency, sub-
threshold oscillations, rebound, bistability, and spike frequency adaptation [Izhikevich, 2004].
Also McCulloch-Pitts neurons are rich enough to simulate any finite-state machine [Minsky,
1967].

For unconventional hardware, one ideally wants to take inspiration from a neural model that
exhibits relevant computational properties without detailing their implementation in actual bio-
logical brains. The Hodgkin-Huxley model, for example, is a conductance based model. As
such it gives an equation for the membrane potential in terms of conductance for intra- and
extracellular concentrations of sodium and potassium. While it is already a simplified model
— the remaining ion currents are lumped together into a single leak current variable — it can
be simplified even further by removing either potassium (the so called transient-sodium model
[Izhikevich, 2007]) or leak currents (a model equivalent to that of Morris and Lecar [1981]). The
resulting models are minimal for spiking: they can still reproduce this central aspect of neu-
ronal behaviour while disregarding others such as spike frequency adaptation, certain kinds of
bursting behaviour and chaos.

In general, the spiking behaviour observed in biological neurons rests on the combination of
a variable whose dynamics are described by a fast positive feedback loop (e.g. sodium) and
a recovery variable that evolves in a slower negative feedback loop (potassium or leak current
in the example above) producing the up- and downstroke of a spike, respectively. In more
abstract models, like those of FitzHugh [1961], Nagumo et al. [1962] or Izhikevich [2003], these
variables do not need to correspond to biophysically meaningful quantities, as long as they
capture the phenomenon of interest. Such models are also much more efficient in terms of
numerical simulation.

As we go from conductance based towards simplified models or even to rate-based or binary
descriptions, progressively stronger assumptions are made about the mechanisms underlying
neural information processing. Similarly to what has been discussed in Section 3.5.5, the
line between what is a relevant mechanism and what is its substrate-specific implementation
becomes blurred.

The wide range of phenomena between biophysical and abstract models reflect the variety of
candidate mechanisms upon which sensory, motor and other mental functions are based in the
brain. An important topic of research concerns the variety of candidate mechanisms for neural
coding. We highlight the main ones:

• Frequency coding is the most classical coding strategy. Here the information, for instance
the intensity of a stimulus or signal, is encoded in the mean firing rate of the neuron.

• In Temporal Coding, the precise timing of the spike carries information. For instance,
given a time-varying signal as input, a neuron can have a thresholding behavior and fires
at the precise moment at which the input signal crosses some threshold [Mainen and
Sejnowski, 1995].

• In Population Coding, a stimulus is encoded in joint activities of several neurons. Each
neuron in the population has a different distribution of responses over some set of inputs
that may be combined to determine the identity of the input [Georgopoulos et al., 1986].

Deliverable D1.1 41 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

• Sparse coding is a general strategy used by various brain areas where only a few neurons

are activated at the same time [Olshausen and Field, 2004].

These basic considerations guide designers in the way they want to use effects at the sub-
strate level. However, the main challenge to use neural networks in an engineering domain is
to find design principles that bridge the local description of one neuron and the global network
level to implement a function. For instance, the learning principle behind the Boltzmann Ma-
chine [Ackley et al., 1985] standardly requires neurons to be discrete-time, discrete value, and
stochastic.

Worked-out algorithms Already a significant number of worked-out brain-inspired algorithms
exist to bridge these local/global gaps. They drive designs of unconventional hardware.

Feedforward neural networks , the bread-and-butter kind of artificial neural networks for pat-
tern recognition, have their original and by now classical motivation as essential models
of visual processing in the human brain [Rosenblatt, 1958]. For visual pattern recognition
today one uses (almost exclusively) a refined variant of feedforward networks, Convolu-
tional Neural Networks (CNNs). The successes of CNNs in Deep Learning [Krizhevsky
et al., 2012] are originally [Fukushima, 1980] inspired by the structure of feature detectors
in the ventral stream of the visual cortex and the spatial invariance of neurons responding
to objects in the inferotemporal cortex [Kobatake and Tanaka, 1994]. However, CNN’s
handcrafting of invariance to the position of features loses information about their spatial
relationships. Alternative brain-inspired methods that specifically tackle this issue might
lead to more robust models [Hinton, 2021, Olshausen et al., 1993].

Recurrent neural networks Hopfield Network models of brain memory storage and recall
[Hopfield, 1982] and the Boltzmann Machine [Ackley et al., 1985] are at the origins of the
current Deep Learning revolution [Sejnowski, 2018]. They both are recurrent neural net-
works and provided the first proofs of concepts of the principled exploitability of non-linear
neural dynamics. Nowadays, Hopfield models of fixed point attractors to model hippocam-
pus memory are being challenged by the constantly moving and rich dynamics observed
experimentally (especially in place cells); this is a subject of current research [Buzsáki,
2019]. Moving from the hippocampus to the cortex, an alternative approach motivated by
the messy arrangement of cortical neurons is reservoir computing whereby one can har-
ness the dynamics of randomized networks to do computations [Maass et al., 2002]. This
method is now a strong driver of unconventional computing applications [Tanaka et al.,
2019].

Bottom-up/Top-down neural networks Additionally to time, one of the most common cri-
tiques from neuroscientists about the plausibility of deep learning models is their lack
of “top-down” projections. Aside from lateral connections and non-hierarchical connec-
tions through the thalamus [Sherman and Guillery, 2011], the visual processing circuit
of the brain includes a large amount of “top-down” connectivity between regions. These
are often interpreted in terms of high-level priors in the framework of Bayesian inference.
Though more difficult to train, some models achieve reasonable performance [Lotter et al.,
2016].

Attention mechanisms Given limitations on the availability of computational resources, such
as memory, it is natural for biological brains to exert some control over where these re-
sources are directed at. The idea has been picked up in the context of encoder-decoder
architectures, where an encoder RNN takes in a sequence and outputs an encoding for
each sequence element. A separate decoder RNN then produces an output sequence

Deliverable D1.1 42 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

from the encodings, for example in translation tasks. As the output sequence is generated
element-wise, an attention mechanism can be used to dynamically reweigh encodings de-
pending on their importance for the output to be produced. A different, less biologically
inspired approach has been proposed as self-attention [Vaswani et al., 2017] and has
since become the state of the art in sequence modeling. Interestingly, Ramsauer et al.
[2020] show the equivalence of self-attention with a modern form of Hopfield networks
and Cordonnier et al. [2019] claim a close relation to CNNs.

Higher-level cognition This is the most speculative area. Far from the sensory and motor
cortices, it is hard to study experimentally. Some proposals revolve around building more
structured working memory in recurrent neural networks. It can be done by taking inspi-
ration from the strength of digital computers by separating memory and computation with
a trainable read/write operation [Graves et al., 2016]. Alternatively, meta-learning proce-
dures can be applied to trained recurrent neural networks to learn to quickly adapt to new
tasks [Wang et al., 2018]. Other proposals tackle symbolic thought directly by replacing
classical symbols with randomly sampled high dimensional vectors (as a model of popu-
lations of neurons) and using different properties of their algebra to implement symbolic
capabilities [Kanerva, 2009].

Untamed brain phenomena The 3 major classes of neuron models capture only a part of
the physical-dynamical phenomena that are used by brains. Many biological effects and mech-
anisms arise at higher levels of complexity than single neurons. They are sources of inspiration
for both a general theory of unconventional computing and for physical microchip / circuit de-
sign. An illustrative choice of such effects is presented here:

• A time scale hierarchy of plasticity mechanisms (from [Jaeger et al., 2021])

– short-term plasticity (1ms-10ms), STDP, SDSP

– long-term plasticity (10ms-500ms for weight change, 1h-years for weight preserva-
tion), LTP, LTD, plasticity of spike traveling delay [Bucher and Goaillard, 2011].

– intrinsic plasticity (0.5s-10s), threshold adaptation

– homeostatic plasticity (1s-1h), synaptic scaling

– structural plasticity (1h-lifetime), architecture reorganization

• Oscillations are ubiquitous in the brain but they also appear to have an active role in
computation. For instance, there is evidence in the retina [Koepsell et al., 2009] and in
the hippocampus [Agarwal et al., 2014] of information coded by aligning the timing of
spikes with the ongoing phase of the oscillations.

• The structural and dynamical complexity of biological dendrites vastly surpasses that of
a classical artificial neuron. Their computational capacities are estimated to be close to
the one of an entire artificial neural network [Jones and Kording, 2020].

• Astrocytes are non-neural cells in the brain that seem to play an important role in the
regulation of neuronal activity [Jones and Kording, 2020].

• A multitude of cells in the hippocampus involved in navigation encode different aspects
of the environment (such as specific locations or corners). These aspects are extracted
and abstracted from different sensory modalities and integrated into coordinate frames
attached to the environment [Behrens et al., 2018].

Deliverable D1.1 43 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

• The anatomical network architecture of perceptual processing systems goes beyond

cleanly stratified hierarchies, even within area V1 of the visual cortex [Felleman and
Van Essen, 1991, Sherman and Guillery, 2011, Niell and Stryker, 2010].

• Complex patterns of neuromodulation allow small networks to switch dynamical modes to
compensate for temperature fluctuations of the environment [Alonso and Marder, 2020].

• The brain is known to form topographic maps where neurons are arranged such that
nearby neurons code for similar features. For instance in V1, nearby neurons are acti-
vated for a similar edge orientation of the input image. Some of these topographic prop-
erties can be captured by self-organizing maps [Kohonen and Honkela, 2007].

• Chaotic dynamics may provide mechanisms for novelty detection and pattern recognition
in the brain. While some single neuron models are capable of displaying chaotic activity,
these need to be discerned from the case where chaotic attractors emerge as a collective
phenomenon on a network level [Freeman et al., 2001]. Skarda and Freeman [1987] ex-
tensively studied odor recognition in the olfactory bulb of rabbits. They found that chaotic
neural activity forms a base state upon expectance of an olfactory stimulus. Once such a
stimulus is applied, the system bifurcates to a limit cycle corresponding to the recognized
odor. This process effectively stabilizes one of the infinitely many unstable periodic orbits
that constitute the skeleton of chaotic attractors [Ott, 2002]. Chaotic neural activity hence
allows fast access to any of the stored limit cycle attractors and in addition provides a trap
state in case an unfamiliar odor is presented.

3.7.2 Cognitive science (behavior inspiration)

Computing is hardly only mechanical, inasmuch as it is always about accomplishing a specific
function. Whether it is about identifying convincing arguments for Logic (Aristotle), understand-
ing brain predictive models of the world for statistical learning (Helmholtz) or taking inspiration
from human clerks doing mental calculation for the formalization of digital computing (Turing),
the elaboration of the concept of computing has always been intertwined with different aspects
of human cognition. Of more immediate concern, the cognitive sciences offer requirements
and ways to describe elaborate behavior that can drive and inspire design of more complex
computing systems.

Cognitive processing landmarks We present here a list of requirements inspired by Elia-
smith [2013] that synthesized decades of analysis in different areas of cognitive sciences and
different mathematical perspectives (statistical, dynamical, and logical).

• Logical languages provide a set of target requirements that humans are able to exploit
such as compositionality, productivity and systematicity. For instance compositionality
refers to the capacity to capture the meaning of a complex representation by adding
together the meaning of basic representations and is still a challenge for neural compu-
tations [Lake et al., 2015]. Additionally humans can manipulate a variety of expressive
languages beyond the classical first-order logic [Bringsjord, 2008] and flexibly use the
context of one situation to disambiguate and enrich the meaning of a word [McClelland
et al., 2019].

• Reasoning with various formats of representation. While existing reasoning algorithms
are in the vast majority language-like (i.e. the information is encoded in a discrete se-
quence of symbols), it is striking that they cannot alone account for human reasoning

Deliverable D1.1 44 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

which relies heavily on image-like representations [Kunda, 2018, Sloman, 2002].

• The general binding problem [Feldman, 2013] is a group of problems that arises in the ma-
nipulation of compositional symbol structure like human language and perception when
spatially separated computations need to be bound together to create a coherent repre-
sentation. This applies to many of the distributed in-memory computing systems.

• The human’s capacity to manipulate abstract concepts is highly dependent and grounded
in perception and interaction with the world [Hofstadter, 1996, Fauconnier, 2001]. Bridg-
ing the abstract and the concrete in cognitive systems is known as the symbol grounding
problem [Harnad, 2007]. A concrete and ongoing sub-challenge consists in integrating
language and perceptual models [Jaegle et al., 2021, Ramesh et al., 2021].

• Robustness requires that a cognitive system be able to deal with different sources of
variability both at the hardware level (such as noise, heat fluctuations, resistance degra-
dation of its components) and at the software level (such as the unpredictability of the
environment, imprecisions in inputs). Notably, hardware robustness needs to be traded
with energy consumption.

• Adaptability is a general requirement for a system to be able to update its future behavior
based on past experiences. It can be done through statistical learning, various type of
reasoning (such as logical or analogical) and many other ways. One starting point is to
analyse how they can be arranged into a hierarchy of different timescales (see Section
3.2).

• For a system to adapt to its environment it needs to be able to use different memory
systems. Cognitive sciences identified different memory systems: working memory, long-
term memory, content-addressable memory, episodic memory (memory of specific events
after one exposure), and procedural memory (automatically triggered memory). Notably,
these concepts are only pointers to different behavioral capacities that highlight the need
to coordinate different memory systems. The realization of these various memory sys-
tems in dynamical substrates is riddled with many open questions (see Section 3.2 for
some examples related to time scales).

Lastly, when building engineering systems multiple scaling issues arise and some of them are
becoming identifiable. The most perceived one involves the difficulty to predict what will happen
when the system gets larger and the environment more complex ("scaling-up"). Comparing
current models and tasks to brains and their environment shows they all are toy models. The
difficulty to predict these scaling behaviors forces us to rely on experimentation [Brown et al.,
2020, Eliasmith, 2013] while taking care that the pursued models do not intrinsically prevent
scaling. This aspect of scaling can be contrasted with "scaling-out", different cognitive modules
should be able to interact with other subsystems within the same overall architecture, in a
fruitful way [Sloman, 2008]. Theoretical and experimental analyses of these interactions are
very scarce. Investigations of child development reveal a curriculum where different modules
and domains of knowledge interact and are progressively integrated [Karmiloff-Smith, 1995].
Children learn to draw different objects separately before being able to merge them to create
for instance a bird with human-looking arms. Another striking example is the evidence for a
deep intertwinement between action and perception at the level of the brain [Niell and Stryker,
2010] and of the behavior [Sloman, 2008, Gibson, 1979] suggesting a necessary co-design of
perception and action modules.

The list of requirements presented in this section is by no means complete, but it offers some
landmarks of minimal complexity for the design of complex enough unconventional systems.

Deliverable D1.1 45 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Notably, very few models from cognitive science and neuroscience even try to reach all these
criteria because of the sheer complexity of the task. One main reason is that this list implicitly
assumes the need to integrate different functions and different modules (such as motor control,
perceptual statistical learning, and symbol manipulations).

Some research in the field of cognitive architectures [Kotseruba et al., 2016] which study “The
fixed (or slowly varying) structure that forms the framework for the immediate processes of
cognitive performance and learning” [Newell, 1990] intends to face this challenge by building
integrated systems. However, few of them are adapted to unconventional hardware mainly
because of the lack of theoretical tools to control them. Unsurprisingly, many of these cognitive
architectures rely on the flexibility of digital computing. Sloman [2002] presents an exhaustive
list of how digital computers allowed to build cognitive systems.

Inspiration for new info-processing Finally, we note that there exist numerous examples of
complex, gradually morphable mental representations of dynamical phenomena investigated
by cognitive scientists that are still not yet well formalized to be of use for building cognitive
systems. For instance, the framework of fluid concepts [Hofstadter, 1996, French, 2006] in-
vestigates the way perception and high-level reasoning interact dynamically in a bottom-up,
top-down fashion. Other examples are radial categories [Lakoff, 1987], complex motion pattern
representations [Bläsing et al., 2009, Tervo et al., 2016], and blending of mental representation
[Fauconnier, 2001]. These are only a few pointers that illustrate the kind of inspiration that one
could use to develop cognitive systems compatible with dynamical substrates.

3.7.3 Critical gaps

A summary of the identified critical gaps is presented here:

Gaps in current "worked-out" neural networks There are well-identified gaps in the current
neural networks models: integrating fast bottom-up with "reflective" top-down processing
of information; limiting the reliance on labeled data and tackling symbolic computations.

Untamed multiplicities of phenomena There is a large number of phenomena that the brain
exploits in an integrated way. A major challenge is to develop formalisms that allow to
opportunistically exploit many different phenomena for achieving a given function.

Engineering complex dynamical systems Our current systems are too simple. Given the
difficulty to formalize them, scaling issues will necessarily arise.

Dynamical mental phenomena Cognitive science already identified a handful of relevant dy-
namical, graded mental phenomena that are still hard to formalize but that might guide
the transition to more flexible unconventional computers.

3.8 Mathematical modeling: requirements and deficits

Digital computing – the unescapable role model for any alternative, “unconventional” approach
to computing – is both a practical craftmanship as well as a rigorously scientific discipline.
Approaches to unconventional computing still are in an early bootstrapping phase (quantum
computing excepted), characterized by a wide-spanning experimental trial-and-error search for
the right angles of attack. A unifying theoretical basis is missing.

Deliverable D1.1 46 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

hierarchies of logics,
meta-logic

knowledge engineering,
user modeling model theory

program verification
“what-”models environment

models

functional or procedural
abstraction

algorithm models

“how-”models:
compilation hierarchies algorithms

circuit design, computer
architecture

use cases, testing, user
feedback, system

upgrades

digital
hardware

physical signals
and effects physical

environment

A/D converters, DSP
chips, clocks

sensors, effectors

3.8.1 The requirements

In this subsection we mostly give a condensed rehearsal of an extensive analytic survey on
theory-building for unconventional computing by PI Jaeger [Jaeger, 2021].

The awe-inspiring forces of digital technologies to unleash productive powers for almost every
sort of human activity are made possible and lasting through the firm rooting of digital computing
practice in a body of mathematical theory. This body of mathematical theory is richly structured
and comprises numerous subtheories, including among others

• the formalization of algorithms (as Turing machine, lambda calculus, random access ma-
chines, cellular automata, general grammars or in many other equivalent formalizations),

• the Chomsky hierarchy of formal languages and automata models,

• the theory of computability,

• the theory of computational complexity,

• first-order logic models to specify the semantics of algorithms,

• a multitude of specialized formal logics for calculi of knowledge representation formats
and user modeling.

In Jaeger [2021] we have described the theory components of the digital computing universe
in some detail. Figure 2 gives an impression of the structuring of this theory cosmos.

Figure 2: The structure of the digital computing theory universe (top: models, formal world descriptors,
formal environment models) and how it relates to the real world (bottom: hardware, signals,
environment). Three main categories of formal theories are “how”-models which specify the
symbolic mechanics of computing processes (automata, machine code, Boolean circuits,),
algorithm models (eg. programming languages, Turing machines, cellular automata), and
“what”-models (logic-based specifications of computing semantics). Shaded arrows and text
boxes indicate systematic transformations and interrelations between subtheories.

This body of formal theories

Deliverable D1.1 47 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

• is highly standardized and taught to computer science students worldwide in essentially

the same way, based on canonical textbooks,

• is internally connected by well-understood mappings and translations between the differ-
ent subtheories,

• has grown from ancient roots in two millennia of an intellectual quest for understanding
the essence of rational reasoning, from Aristotle’s syllogisms to the 20th century of mod-
ern mathematical logic, culminating in Turing’s formalization of reasoning as a replicable
mechanistic process,

• and since antiquity committed to seeing rational reasoning (and hence, computing) as
inherently discrete and symbolic.

We emphasize the need for a richly structured compendium of subtheories, as opposed to the
idea that one could or should aim for a single, grandly unified foundational theory for unconven-
tional computing. In the reality of a mature computing discipline, a wide spectrum of experts
must collaborate. They are each specialists for the hierarchical layers of computing systems,
from microchip design and manufacturing to computer architectures, strata of cross-compilable
programming languages, program specification and verification, and use case and user model-
ing. Each of these specialists needs his/her own formal tools and languages which is adequate
for the respective segment of computing systems.

A similar anchoring in a rigoros formal coordinate system is missing, and we find that even the
necessity to develop a compendium of specialized sub-theories is rarely perceived. Almost all
of the existing approaches to theory-building (compare listing in Section 2.1) either address only
a limited section of the “computing” landscape, or aim for a singular and comprehensive theory.
Stepney and Hickinbotham, leading theorists for unconventional computing, list a number of
existing mathematical formalisms that are tailored to specific subsets of material phenomena
or computational functionalities, and otherwise remark that an “over-reaching formalism ... may
be desirable” [Stepney and Hickinbotham, 2018].

In Jaeger [2021] we investigate in some detail two further worked-out conceptualizations of
“computing” which are complementary to the digital/symbolic paradigm. The aim of that study
is to identify fundamental conceptual invariants shared by all views on “computing”, in order to
distil necessary conditions for our ultimate goal of establishing a rigorous theory for unconven-
tional computing.

The first of these two non-digital views on “computing” are sampling-based methods for infer-
ences about probability distributions (SIP methods for short). The central commitment here
is to regard cognitive processes as probabilistic inference, and “computing” as realizing such
inferences through sampling procedures like Monte Carlo Markov Chain (MCMC) [Neal, 1993]
or particle swarm methods [Dellaert et al., 1999]. The requisite random sampling processes
are still mostly simulated on digital computers, but also have become realized in non-digital
computing systems, namely in DNA computing [van Noort et al., 2002] for solving optimization
and search problems, and more recently and with a wider application range in analog spiking
neuromorphic hardware [Indiveri et al., 2011, Haessig et al., 2018, Moradi et al., 2018, Neckar
et al., 2019, He et al., 2019]. According to the neural sampling view forwarded in theoretical
neuroscience [Buesing et al., 2011, Pecevski and Maass, 2011], temporal or spatial collectives
of neuronal spike events can be interpreted (or used by the brain) as samples. Due to this invit-
ing analogy to biological brains and the low-power characteristics of analog spiking neurochips,
research in such hardware and corresponding “algorithms” is expanding. But more importantly
in the context of this deliverable report, SIP methods open views on “computing” that differ from

Deliverable D1.1 48 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

the digital/symbolic paradigm in interesting ways.

The second alternative conceptualization of “computing” are models of information processing
that are cast in the format of ordinary differential equations (ODE methods for short). Since
almost a century, biological systems — neural and others — have been studied in general sys-
tems theory [von Bertalanffy, 1968] or cybernetics [Wiener, 1948]. This tradition co-evolved
with the engineering science of signal processing and control [Wunsch, 1985]. A classical
landmark in interpreting the human brain as a dynamical (self-)control system is the Design
for a Brain of Ashby [1952]. In another co-evolving strand, neural dynamics became mod-
eled in a theoretical physics spirit, by isolating and abstracting dynamical neural phenomena
into systems of differential equations, exemplified in the neuron model of Hodgkin and Hux-
ley [1952]. Later, when the mathematical theory of qualitative behavior of dynamical systems
[Abraham and Shaw, 1992] had matured and in particular after chaos and self-organization in
dynamical systems became broadly studied, dynamical systems modeling rose to a commonly
accepted perspective in cognitive psychology and cognitive science [Smith and Thelen, 1993,
van Gelder and Port, 1995]. Today the separations between these historical traditions have al-
most dissolved. Mathematical tools from dynamical systems theory are ubiquitously employed
in modeling neural and cognitive phenomena on all scales and abstraction levels, in a diversity
that defies a survey. Even when seen only from within mathematics, dynamical systems theory
is a highly diversified field. Here we will only consider models expressed with ordinary differen-
tial equations, since these ODE models are the most wide-spread ones. Again, ODE methods
open our eyes to aspects of information processing which are hardly accessible in the digi-
tal/symbolic paradigm, in particular aspects of continuous time and state spaces, real-valued
representations of “information” or “knowledge”, and self-organization, dynamically controlled
modulation of “data”, stability and robustness.

We have thus three alternative, worked-out conceptualizations of “computing”: the digital /sym-
bolic computing one (DC methods for short), SIP models and ODE models. Across the diversity
of perspectives and mathematical formalisms, in Jaeger [2021] a number of common organi-
zational principles was worked out, which allow us to relate these three sorts of models to
each other and distil coordinates in which, we believe, every fully fledged theory framework for
“computing” should become localized — including a future general theory (or rather, system
of interrelated subtheories) for “computing” based on nonlinear phenomena in unconventional
materials. In the remainder of this subsection we review the four common coordinates that were
explored in detail in Jaeger [2021].

Coordinate 1: Subtheory interrelations. All three paradigms become formalized in interre-
lated subtheories and models, with principled mappings between them:

In DC: We distinguish two sorts of formalisms and models in the world of DC: how-formalisms
/ models and what-formalisms / models. The former describe digital hardware systems in
a double hierarchy. In the first dimension, the Chomsky hierarchy, automata (and gram-
mar) models capture computing systems in a hierarchy of computational power, from
finite-state automata up to the most general and powerful class, the Turing machine and
its equivalents. In the second dimension, formalisms/models are ordered with respect
to how close they are to the underlying hardware, from microchip-specific instruction
sets and assembler programming languages at the “low” end, up to graphical program-
ming interfaces at the “high” end. Different abstraction layers of such how-models are
linked through compilation cascades. – What-models are logic-based descriptions of
how-models. There exist numerous different formal logics each of which is designed to
best model specific aspects of what computing processes “mean” or “effect”. The seman-

Deliverable D1.1 49 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

F

F

tics that is declared for every logic connects the procedural “how”-mechanisms to what
they “mean” or “effect” in the external environment.

In SIP: The analogue of DC how-models are specifications of sampling procedures (or just
“samplers”), with MCMC samplers being the arguably most powerful class. However,
differing from the situation in DC, the topic of inter-relating different samplers accord-
ing to suitably defined measures of expressiveness has not yet been systematically ex-
plored. The analogue of DC what-models are probabilistic models which connect proce-
durally to samplers and semantically to real-world environments. Noteworthy examples
are Bayesian networks when inferences in them are executed by sampling, or models of
biological neural processing based in the neural sampling paradigm.

In ODE: Here we find only a single how-formalism: the very mathematical formalism of ordi-
nary differential equations. These models directly capture the real-time, metric dynamics
of continuous variables in computing systems — voltages and currents in analog mi-
crochips and neuronal circuits, activations of neural assemblies or concepts in models of
neural cognitive processes. While there are inclusion hierarchies of classes of such ODEs
— foremostly, ordering them by the highest order of derivatives, speaking of first-order,
second-order etc. ODEs — the ODE formalism per se is always the same. What-models
capture qualitative phenomena in dynamical systems, giving rise to a zoo of geometrically
defined objects like point attractors or repellors or saddle-nodes, periodic orbits, chaotic
attractors, stable and unstable manifolds, basins of attraction etc.

Coordinate 2: Semantics. Computing systems interact with their real-world environment by
user input/output, signal input, and/or effector output. Semantics are defined for the what-
models in each of our three considered paradigms, but not for the how-models. A mathemat-
ical formalization of the “real world” environment, plus a formal semantic mapping between
the information structures inside the computing system and its outside embedding, is always
available:

In DC: The logics which are used for DC what-models each come with a formalization of ex-
ternal environments, typically expressed in set-theoretic S-interpretation, where the “S”
stands for the set of symbols used in the respective logic. These symbols (in particular
symbols of objects, relations and functions) are semantically interpreted by sets inside
the S-structures. Formally, the semantic relationship is established between symbolic ex-
pressions ϕ written in the symbolism of the respective logic, and an S-interpretation I.
One says that “ϕ holds in I”, or that “ I is a model of ϕ” (written: I |= ϕ).

Viewing “computation” through the eyes of formal logic has a history that dates back to
Aristotle’s syllogisms. When Turing [1936] devised his machine model (now called the
Turing machine) in his epochal paper he did not aim for a practical model of computing
hardware but for a treatment of the formal decision problem in logic, which in turn is the
abstraction of conceptual/symbolic human reasoning that marks the culmination of more
than 2000 years of first philosophical, then mathematical inquiry.

In SIP: In probability theory, the formal models of segments of reality are probability spaces.
A probability space is a three-component mathematical structure standardly written as
(Ω, , P), where Ω (often called “universe” or “population”) is a set of elementary events
which can be intuitively understood as locations in spacetime where measurements could
possibly be made; is a certain subset structuring imposed on Ω; and P is a probability
measure that assigns probability values to the subsets (called events) of this structuring.
The formal connection between such world models (Ω, F, P) and the descriptive what-

Deliverable D1.1 50 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

∈
F

formalism of probability theory is established by random variables. I remark that the
naming “random variable” is entirely misleading. Mathematically, random variables are
functions, not variables; and they are not random, but deterministic. They are the formal
model of observation or measurement procedures. The randomness of random variables
results not from that they somehow return random values, but that random arguments
are given to them, following the probabilities prescribed by the item P in the world model
(Ω, , P). The basic statements that can be made in the formal language of probability
theory are expressions P (X(ω) A)) = p, which states that the probability of obtaining a
measurement value in a value range A when the measurement procedure X (a random
variable) is applied to some “random” elementary event ω ∈ Ω, is p.

In ODE: In the DC and SIP paradigms, there are dedicated formalisms for modeling the “real”
environment in which a computing system is situated, namely the formalisms of S-interpretations
and probability spaces. Formal expressions in DC or SIP what-models are written down in
a formalism different from the how-formalisms. These formal expressions of what-models
express claims about something being the case in the respective environment model. A
semantic theory relates a formalism in which claims about (or observations in) some en-
vironment can be expressed, to another formalism needed to represent the “real-world”
structures in the environment.

In the ODE modeling world, a rigorous semantic theory is not available. In Jaeger [2021]
we speculate that the semantic blindness of ODE modeling is historically explainable by
the circumstance that the evolution of ODE modeling methods for a long time was mostly
driven by the needs of physics, and physicists want to isolate their objects of investigation
from the environment as perfectly as possible. As a consequence, the mathematical the-
ory of isolated dynamical systems that have neither input nor output (called autonomous
dynamical systems) is much further developed than the theory of input-driven, output-
generating (“non-autonomous”) systems. Theory-building for non-autonomous systems
has only recently started and is still a niche field whose challenges and results are not
widely perceived outside a small circle of specialists. When today mathematical neurosci-
entists analyse computational processes in brains with ODE methods, they are virtually
forced to treat the brain as an isolated system due to the unavailability of formal tools for
analysing complex non-autonomous systems.

In the ODE paradigm there is an option which is not available for DC and SIP, which allows
one to formally connect a computing system to its environment on the procedural level of
how-formalisms. Both the computing system and the environment can be modeled with
differential equations, and the coupling between these two systems is effected through
shared variables. Mathematically speaking, the coupled system is again an autonomous
system. Coupling (sub)systems together by shared variables in systems of differential
equations, and analysing the compound system as an autonomous system, is constitutive
for control theory. But, although this coupling of a subsystem into a compound system is
obviously of great importance for complex system modeling in general, this coupling of
two systems is not of a semantical character: the two systems are described in the same
formalism, they stand side by side on an equal footing and in their symmetric relationship
there is no “aboutness”.

A properly semantical theory for the ODE paradigm would have to connect qualitative
phenomena (attractors, bifurcations etc), which occur in a computing system and which
can be interpreted as carriers of information, with givens of some sort in the environment
(objects, actions, ...), which would be formalized in a formalism of “qualitative physics”
that still needs to be invented (the symbolic logic formalisms that are called “qualitative

Deliverable D1.1 51 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

physics” [Forbus, 1988] in artificial intelligence research are not suited as world modeling
substrate for the ODE paradigm).

Coordinate 3: Formal time. In whatever way “computing” is conceived, it must be cast as a
process, not as a static object. The temporal evolution of a computing process is modeled in
interestingly different ways:

In DC: Formal time surfaces in distinctively different ways in how- versus what-formalisms. For
how-formalisms the story is quickly told. Automata models and (imperative) programming
languages specify formal, discrete update rules which transform symbolic configurations
(e.g. bit vectors of a memory cell array, or a data structure in a programming language)
in discrete “update” steps. At the most hardware-close level, these update steps become
ultimately mirrored in the physical clock cycles of digital microchips. The how-formalisms
do not assign “real” time durations to state update operations – the only aspect of tempo-
rality which is present in DC how-formalisms is the ordering of updates from a “previous”
to a “next” symbolic configuration.

In logic-based what-formalisms, the analogue of state updates are logical derivation
steps. A derivation step leads from a set of previously derived logical expressions to
a new one which is entailed by, or inferred from the already given ones. Again, like in the
state update steps of how-formalisms, there is no specification of temporal duration for
these derivation steps: logical inference is logical in nature, not temporal or causal.

In SIP: Formal time is knitted into SIP formalisms and models in intricate ways, often involving
further theoretical elements reflecting space and temporal hierarchies. In how-formalisms
(that is, specifications of sampling procedures), two widely separated timescales are
always present: the fast timescale of generating a single sample point, and the slow
timescale of accumulating large numbers of them to obtain increasingly precise repre-
sentations of probability distributions.

The condition that the sampling from a probability distribution takes time to yield a high-
precision representation of the distribution, leads to involved constraints when sampling
methods are put to practice. In static information processing tasks like image classifica-
tion, the input interface of the classifying system is clamped to input image and transforms
it to a sample (e.g. through sending spikes from a retina), allowing the sampling to grow
the sample large enough to decode from it the result with the desired degree of accuracy.
In online processing tasks (for instance autonomous robot action selection and control),
the computing system’s input and output are data streams. This is the generic situation in
adaptive online signal processing and control [Farhang-Boroujeny, 1998] and in the study
of situated agents [Steels and Brooks, 1993], which comprise humans, animals, robots,
software avatars or computer game characters. Solving such tasks, where input patterns
or output patterns are themselves temporally evolving, requires sampling mechanisms
where the next generated sample point depends on the history of previously generated
ones. Important classes of formalisms of this kind include spiking recurrent neural net-
works [He et al., 2019], temporal restricted Boltzmann machines [Sutskever et al., 2009]
and sampling-based instantiations of dynamical Bayesian networks [Murphy, 2002].

In ODE: In the how-models (that is, ordinary differential equations), the formal time model is
hidden in the dot in ẋ , the shorthand for the derivative dx/d t with respect to time t. The
symbol t denotes the “real” time, measured in physical units like seconds, when ODE
models are written down to describe physical computing systems. This is categorically
different from the abstract state updates in DC models: One will never find the word

Deliverable D1.1 52 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

“second” mentioned in a textbook of theoretical computer science! The fact that a formal
“1 sec” segment of t really means one physical second in ODE analog circuit models
has important consequences for analog computing practice. First, the designer of analog
circuits must match time constants in his/her formal ODE models to the physical time on
board of the microchip. Second, analog computing systems must be timescale-matched
to their physical task environment because both operate in the same physical time.

As to ODE what-models, the quantification of time lapses in physical units is lost, and
only the direction of the arrow of time is preserved. This loss of numerical measurability
of time is a consequence of the very definition of “qualitative phenomena” in dynami-
cal systems, which rely on topological homeomorphisms between dynamical systems to
achieve equivalence classes of qualitatively identical – but quantitatively differing – phe-
nomena and systems.

Coordinate 4: Hierarchical structuring of formal constructs. Human cognitive processing
admits — or in some views [Newell and Simon, 1976], is even constituted by — the compound-
ing (“chunking”) of representational or procedural mental states or mechanisms into larger com-
positional items, giving rise to compositional hierarchies of representations, mechanisms or
processes. Any practically useful account of “computing” should be scalable to increasingly
complex tasks. This requirement has led in each of our three considered paradigms to the
specification of ways how one can hierachically compose the respective formal constructs into
increasingly compounded information structures:

In DC: All how- and what formalisms in DC admit to compose symbolic configurations into
more compounded ones, which then can be used as building blocks in yet higher levels
of compositionality. In how-models one finds compositional hierarchies that progress, for
example, from bits to ASCII symbols to words to lists to arrays ... to objects to scripts to
programs. Likewise, the syntax of logic what-formalisms admit arbitrarily deeply nested
functional expressions, connected into arbitrarily large and modular expressions by logical
connectives like AND, NOT, OR and many others.

All these structuring principles and operators are cognitively interpretable. Writing com-
puter programs or adding new logic formulas to an AI knowledge base is easy for a
halfway trained human. This should not come as a surprise because, as we mentioned
before, the theory and practice of symbolic computing originated as an attempt to reflect
and automate human reasoning.

In SIP: We start our discussion with the what-models of SIP, that is, specifications of probability
distributions. Probability distributions can be hierarchically organized in at least three
ways, all of which are widely used.

First, when one considers joint distributions of many random variables, the latter can be
arranged in hierarchical Bayesian networks which typically capture observables and hy-
pothetical explanatory factors in a layered arrangement with observable random variables
at the bottom (“symptoms”, “evidence”, “sensor data”), and in the top layer explanatory
variables that are intended to represent hidden causes (like diseases or engine faults) of
the observations in the bottom layer.

Second, hierarchies of distributions canonically arise in probabilistic models as conceived
in Bayesian probability [Jaynes, 2003, Jaeger, 2019], where distributions become them-
selves distributed in hyperdistributions. In the original motivation of Bayesian probabil-
ity, these higher-level hyperdistributions reflect the subjective prior beliefs of an intelli-

Deliverable D1.1 53 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

gent agent about which lower-level distributions are more or less plausible. Applying
this principle to modeling probabilistic cognitive systems one obtains formalisms that are
hierarchical in a substantial sense. The relationship between a distribution and a hy-
perdistribution is asymmetric. A hyperdistribution could be said to control, modulate or
bias its lower-level children distributions. This gives rise to cognitive processing mod-
els whose dynamics unfolds in an interplay of bottom-up pathways (from sensor input to
their cognitive interpretations) and top-down pathways (cognitive expectations modulating
the perceptive filtering below). Prominent representatives of such bidirectional cognitive
processing systems are Grossberg’s Adaptive Resonance Theory models [Grossberg,
2013], Friston’s free-energy models of processing hierarchies in brains [Friston, 2005]
and Tenenbaum’s models of human cognition [Tenenbaum et al., 2006].

Third, more elementary (lower-dimensional) distributions can always and precisely be
mathematically combined into compound (higher-dimensional) distributions by product
operations. Conversely, high-dimensional distributions can sometimes be approximately
factorized into products of low-dimensional ones. Such factorizations are a major enabler
to construct and evaluate high-dimensional probabilistic models of real-world systems in
machine learning, computer graphics and physics [Huang and Darwiche, 1994].

In ODE: In ODE modeling, the hierarchical structuring of formal constructs is intimately con-
nected with timescales. When researchers in cognitive neuroscience, robotics and au-
tonomous agents or machine learning conceive of their respective intelligent agent archi-
tectures as dynamical systems, they almost by reflex assign fast timescales to subpro-
cesses that operate close to the sensory-motor interface boundary at “low”, elementary
levels of the cognitive processing hierarchy, and the assign slow timescales to subpro-
cesses operating at “higher” levels of the hierarchy. In our opinion, timescale hierarchies
are key for finding hierarchicity in dynamical systems.

In dynamical systems that compute (brains, digital and non-digital computers and mi-
crochips), timescales of information processing (sub)processes are directly connected to
a temporal hierarchy of memory mechanisms, which range from a few milliseconds (giv-
ing the actual duration of the experiental “now”) up to lifelong persisting memory traces
that define a personality.

Mathematical and applied research on multiple timescale dynamics in ODE models is so
rich that an overview cannot be attempted here. Jaeger’s research group at the Univer-
sity of Groningen is a partner in a EU Horizon 2020 project “Memory technologies with
multi-scale time constants for neuromorphic architectures” (MemScales) which is entirely
devoted to multiple timescales in neuromorphic computing systems. A recent technical
report surveys some important branches of timescales modeling in neuroscience, math-
ematics and computer science / machine learning [Jaeger et al., 2021]. ESRs 1 and 2
have familiarized themselves with this line of research and their PhD thesis projects will
accomodate timescale hierarchies in different ways.

We mention that the distinction between how- and what-formalisms, which for us is a strong
guide, is analog to the distinction between the algorithmic and the implementation layers of
brain modeling according to the classical methodological framework for neuroscience of Marr
[1980]. An extensive survey by Guo et al. [2021] reviews and structures research in neuromor-
phic computing along Marr’s modeling layers.

Summarizing the yield of this excursion into different worked-out conceptualizations of “com-
puting”, we obtain the following “big picture” of what is missing with regards to a rigorous formal
foundation for computation in unconventional substrates:

Deliverable D1.1 54 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

∈

1. A foundational theory for unconventional computing is still missing at present.

2. This lack is widely perceived and deplored, but we doubt that the complexity of the task to
develop such a foundation is properly acknowledged. Specifically, one should not attempt
to find a single unified theory framework, but instead one will have to develop a whole net-
work or interconnected subtheories, formulated in different formalisms, in order to serve
the requirements of practical work along all the layers of computing engineering, from
hardware design to system configuration / programming / training up to user interfacing
and use-case modeling.

3. We identified (among others, not mentioned here but described in Jaeger [2021]) four
dimensions of modeling computing systems which we believe every theory system for
“computing” must cover: (i) a hierarchical organization of interconnected subtheories with
how- and what-theories; (ii) formal semantic accounts of what an executing computation
“means”; (iii) a model or at least a clear understanding of how the time of computing
processes relates to the semantic “meaning” of the computation; (iv) formal mechanisms
to build arbitrarily complex hierarchical information structures or processes in the for-
malisms, in order to solve arbitrarily complex tasks.

Given these demanding constraints, the task to develop a theory foundation for unconventional
computing is daunting. In the next subsection we propose a possible starting point for this
endeavour.

3.8.2 From bistable switching to modes: generalizing digital computing toward

a theory of unconventional computing

On the present day there are no clearly visible guides how one should proceed to build a theory
system which can capture a kind of “computing” which can exploit a wide range of nonlinear,
nanoscale physical phenomena in unconventional material substrates. The problem is under-
determined and there are many degrees of freedom to search for a solution. Here we sketch
the approach that is pursued in Jaeger’s MINDS group at the University of Groningen. While the
research of ESRs 1 and 2 is not defined in a concrete relation to this foundational programme
— that would be impossible because that foundational programme is not well-defined yet —
the results obtained by these ESRs will provide instructive examples of “computing” processes
which lead beyond the conceptual confines of digital computing.

We start from the insight that a theory system of “computing” should root in a formal construct
which represents the elementary physical carriers of “information”. In our three role models
these formal constructs and the corresponding elementary physical realizations are

in DC the “bit” symbols 0 and 1 (or False and True) realized by the two switchable states of
bistable electronic (or other) circuits;

in SIP probability distributions which are approximately realized in samples of physical events;

and in ODE vectors x Rn as mathematical models of n-dimensional (and in principle mea-
surable) state projections of a continuous-time physical computing system.

In the how-formalisms of all three paradigms, these elementary formal constructs each come
with a specific way of how the exist and change in time:

the bits in DC are “set” (“written”) in specific points in the ordered sequence of update steps of
an automaton or program, and once they are set they remain at their value for an arbitrary

Deliverable D1.1 55 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

number of further system update steps until they are flipped,

the probability distributions in SIP gradually take shape and precision as the sampling pro-
cedure progresses,

and the state vectors in ODE exist only at single time points t on the real-valued timeline,
changing smoothly with t;

and they can be composed into hierarchical compounds

in DC by organizing bits in nested bitstrings,

in SIP by conditional probability cascades, product operations and hyperdistribution relations,

and in ODE by coupling systems of ordinary differential equations through shared variables.

For a general theory of “computing” based on nonlinear effects in unconventional substrates,
we wish to define a sort of elementary formal construct which corresponds to (in principle
observable) real physical phenomena, and which similarly comes with a formal representation
of temporal evolution and hierarchical compositionality. In our internal parlance, we refer to
these — still elusive — elementary formal constructs as modes.

In addition to the temporality and compositionality requirements, we find that the mode con-
struct also needs to encorporate some formalization of spatial extension (“spatiality”). Many
nanoscale nonlinear phenomena with an apparent potential for computational exploits are in-
trinsically spatially organized, for example (a small selection) moving solitons, potential walls,
waves, boundaries between different crystallization orientations, particle clusters or nanotube
meshes. We note that even the construct of bits has an implicit spatial component: 1-bit mem-
ory devices must be spatially separated from each other and connected by signal propagation
lines, leading to the spatial organization of connection graph topologies.

At present we can express our developing ideas about modes only in intuitive terms, supported
by suggestive graphics (Figure 3).

A theory system for “computing” in general physical systems should include digital computing
systems as a special case. We thus desire that bits can be seen as a special case of modes.
Figure 3 conveys our basic intuitions.

Modes generalize from bits in several ways:

• While a bit is either on or off, modes can be present with different intensities (e.g., ener-
gies), fading in and fading out.

• While a bit is localized in a “point” (at least conceptually and in good physical approxima-
tion) at the gate of a binary device, modes can be extended over a spatial region, and
possibly move across the physical substrate.

• While in DC there are only exactly two modes, there may be an unlimited number of
modes in generalized computing systems (Figure 3C) – as many as one can realize dif-
ferent “observers” (filters, feature detectors).

Working out these initial ideas into a rigorous mathematical mode construct is ongoing in
MINDS, in collaboration with materials scientists, mathematicians and theoretical computer
scientists. ESRs 1 and 2 are immersed in this interdisciplinary research, and ESRs 3, 5, 9
and 10 who will spend their first secondments in the MINDS group will likewise be exposed to
these investigations, which are more abstract and formal than the experimental research in their
original host environments — a challenging exercise and experience in interdisciplinarity.

Deliverable D1.1 56 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Figure 3: Digital (A) and generalized (B,C) modes (schematic). A: the two digital modes (switching
states of a bistable physical device, indicated by black and white) are defined in fixed nodes
in a connection graph which represents the “space” of a digital computing system. B: in con-
tinuously extended computing media, modes may gradually appear and disappear, move, and
overlap. — The vertical image bar on the left side is borrowed from materials scientist Beatriz
Noheda at the University of Groningen and shows a microscopic image of a self-organized
structuring of a ferromagnetic film. Jaeger’s MINDS group collaborates with Noheda’s team in
a joint project where electromagnetic dynamics in such materials are modeled for computa-
tional exploits. C visualizes that a given physical phenomenon (here: a 1-dimensional temporal
signal, e.g. a voltage signal) can instantiate different modes, of which three are indicated. For
instance, the “white noise” mode is present with a high intensity only at the beginning and end
of the shown episode.

Deliverable D1.1 57 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

4 Conclusion

This document is an attempt to highlight the critical gaps in our theoretical and formal under-
standing and modeling of "computing" in non-digital physical systems. It cannot identify just a
few "critical gaps" because there is not yet a global picture of unconventional computing. The
views presented are necessarily constrained by the biases of the main authors (ESRs 1 and 2)
that reflect their respective backgrounds, their current projects and their still limited exposure to
the fields of unconventional computing.

We presented the workable theoretical directions that we can see from the current scattered
landscape of unconventional computing. We are inspired by the theoretical underpinnings of
digital computing where an interrelation of formal systems allowed humans to collaborate to
incrementally build one of the most complex systems with a strong foundation, which is now
called "Turing’s Cathedral" [Dyson, 2012]. However, we identify sparkling opportunities that
call for an investigation of alternative foundations, ones that exploit not only binary switching
but any physical phenomena, that allow controlling "wild" systems [Jaeger, 1998] that cannot
be entirely controlled and observed but that can be steered toward the right direction. We
elaborated one way of unifying complementary approaches structured in bottom-up and top-
down interactions. The bottom is physics. We argue that physical phenomena need to be
exploited beyond binary switching. The brain is living proof that it is possible to exploit a large
repertoire of physical phenomena within the same system. The concept of dynamical "modes"
presented in Section 3.8 is a first step in this direction. The top is the cognitive aspects where
behavioral analysis of humans and other animals provide landmarks toward which the global
behavior of our engineered systems needs to move. In between there is programming: every
complex well-functioning artifact needs to be designed, configured, and interacted with. The
concept of programming is progressively slipping and needs to be enriched to take into account
the substrate phenomena, the cognitive operations it affords, and their progressive automation.
Programming takes a biological flavor: it is less about the full control of an isolated system but
the engineering of interactions between a cognitive system and its environment.

This approach can help to bring a shared perspective, a common thread by which a produc-
tive and strategical research endeavor could start and bring together local research strands
in Material Sciences, Photonics, Artificial Intelligence, Computer Science, Mathematics and
Cognitive Science.

Deliverable D1.1 58 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

References

S. Aaronson. Quantum Computing since Democritus. Cambridge University Press, 2013.

10.1017/cbo9780511979309.

H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight Jr, R. Nagpal, E. Rauch,
G. J. Sussman, and R. Weiss. Amorphous computing. Communications of the ACM, 43(5):
74–82, 2000.

R. H. Abraham and C. D. Shaw. Dynamics: The Geometry of Behavior. Addison-Wesley,
Redwood City, 1992. e-book at http://www.aerialpress.com/dyn4cd.html.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines.
Cognitive Science, 9(1):147–169, jan 1985. 10.1207/s15516709cog0901_7.

A. Adamatzky. Physarum Machine: Implementation of a Kolmogorov-Uspensky Machine
on a biological substrate. Parallel Processing Letters, 17(04):455–467, dec 2007.
10.1142/s0129626407003150.

G. Agarwal, I. H. Stevenson, A. Berenyi, K. Mizuseki, G. Buzsaki, and F. T. Sommer. Spatially
distributed local fields in the hippocampus encode rat position. Science, 344(6184):626–630,
May 2014. 10.1126/science.1250444. URL https://doi.org/10.1126/science.1250444.

A. Alaghi and J. P. Hayes. Survey of stochastic computing. ACM Transactions on Embedded
Computing Systems, 12(2s):1–19, may 2013. 10.1145/2465787.2465794.

F. Alet, J. Lopez-Contreras, J. Koppel, M. Nye, A. Solar-Lezama, T. Lozano-Perez, L. Kaelbling,
and J. Tenenbaum. A large-scale benchmark for few-shot program induction and synthesis.
In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pages 175–186.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/alet21a.html.

L. Alonso and E. Marder. Temperature compensation in a small rhythmic circuit. Elife, (9):
e55470, 06 2020. 10.7554/elife.55470.sa1.

G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the 1967 Spring Joint Computer Conference - AFIPS. ACM
Press, 1967. 10.1145/1465482.1465560.

M. Andraud and M. Verhelst. From on-chip self-healing to self-adaptivity in analog/rf ics: chal-
lenges and opportunities. In 2018 IEEE 24th International Symposium on On-Line Testing
And Robust System Design (IOLTS), pages 131–134. IEEE, 2018.

W. R. Ashby. Design for a Brain. John Wiley and Sons, New York, 1952.

A. Avižienis. Framework for a taxonomy of fault-tolerance attributes in computer systems. In

Deliverable D1.1 59 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

Proceedings of the 10th annual international symposium on Computer architecture - ISCA
'83. ACM Press, 1983. 10.1145/800046.801633.

J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, editors. Unconventional Programming
Paradigms. Springer Berlin Heidelberg, 2005. 10.1007/11527800.

J. Beal and M. Viroli. Space–time programming. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 373(2046):20140220, jul 2015.
10.1098/rsta.2014.0220.

T. Becker, O. Mencer, and G. Gaydadjiev. Spatial programming with OpenSPL. In FPGAs for
Software Programmers, pages 81–95. Springer International Publishing, 2016. 10.1007/978- 3-
319-26408-0_5.

T. Behrens, T. Muller, J. Whittington, S. Mark, A. Baram, K. Stachenfeld, and Z. Kurth-Nelson.
What is a cognitive map? organizing knowledge for flexible behavior. Neuron, 100:490–509,
10 2018. 10.1016/j.neuron.2018.10.002.

T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo, A. R.
Voelker, and C. Eliasmith. Nengo: a python tool for building large-scale functional brain
models. Frontiers in Neuroinformatics, 7, 2014. 10.3389/fninf.2013.00048.

Y. Bengio, A. C. Courville, and P. Vincent. Unsupervised feature learning and deep learning:
A review and new perspectives. CoRR, abs/1206.5538, 2012. URL http://arxiv.org/abs/
1206.5538.

T. Besold, A. d’Avila Garcez, S. Bader, H. Bowman, P. Domingos, P. Hitzler, K.-U. Kühnberger,
L. C. Lamb, D. Lowd, P. Machado Vieira Lima, L. de Penning, G. Pinkas, H. Poon, and
G. Zaverucha. Neural-symbolic learning and reasoning: A survey and interpretation. arxiv
manuscript, 2017. URL https://arxiv.org/pdf/1711.03902.

B. Bichsel, M. Baader, T. Gehr, and M. Vechev. Silq: a high-level quantum language
with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation. ACM, jun 2020.
10.1145/3385412.3386007.

L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real num-
bers: NP-completeness, recursive functions and universal machines. Bulletin (New Series)
of the American Mathematical Society, 21(1):1–46, 1989.

B. Bläsing, G. Tenenbaum, and T. Schack. The cognitive structure of movements
in classical dance. Psychology of Sport and Exercise, 10:350–360, 05 2009.
10.1016/j.psychsport.2008.10.001.

K. Boahen. A neuromorph's prospectus. Computing in Science & Engineering, 19(2):14–28,
mar 2017. 10.1109/mcse.2017.33.

G. Booch. The large-scale structure of software-intensive systems. Interface Focus, 2(1):91–
100, nov 2011. 10.1098/rsfs.2011.0066.

S. K. Bose, C. P. Lawrence, Z. Liu, K. S. Makarenko, R. M. J. van Damme, H. J.
Broersma, and W. G. van der Wiel. Evolution of a designless nanoparticle network
into reconfigurable boolean logic. Nature Nanotechnology, 10(12):1048–1052, sep 2015.
10.1038/nnano.2015.207.

O. Bournez and A. Pouly. A survey on analog models of computation. May 2018.

Deliverable D1.1 60 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

S. Bringsjord. Declarative/Logic-Based Cognitive Modeling, pages 127–169. Cambridge Hand-

books in Psychology. Cambridge University Press, 2008. 10.1017/CBO9780511816772.008.

R. A. Brooks. Intelligence without reason. In Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence - Volume 1, IJCAI’91, page 569–595, San Francisco, CA,
USA, 1991. Morgan Kaufmann Publishers Inc. ISBN 1558601600.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL
https://arxiv.org/abs/2005.14165.

D. Bucher and J.-M. Goaillard. Beyond faithful conduction: Short-term dynamics, neuromodu-
lation, and long-term regulation of spike propagation in the axon. Progress in neurobiology,
94:307–46, 06 2011. 10.1016/j.pneurobio.2011.06.001.

L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as sampling: A model for
stochastic computation in recurrent networks of spiking neurons. PLoS Comp. Biol., 7(11):
e1002211, 2011.

G. Buzsáki. The Brain from Inside Out. Oxford University Press, 2019. ISBN 9780190905385.
10.1093/oso/9780190905385.001.0001.

J. Cabessa and H. T. Siegelmann. Evolving recurrent neural networks are super-
turing. In The 2011 International Joint Conference on Neural Networks. IEEE, jul 2011.
10.1109/ijcnn.2011.6033645.

T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde, H.-C. R. Euler, H. Broersma,
P. A. Bobbert, F. A. Zwanenburg, and W. G. van der Wiel. Classification with a disordered
dopant-atom network in silicon. Nature, 577(7790):341–345, jan 2020. 10.1038/s41586-019-
1901-0.

A. Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science.
Behavioral and Brain Sciences, 36(3):181–204, may 2013. 10.1017/s0140525x12000477.

M. Conrad. The price of programmability. In A Half-Century Survey on The Universal Turing
Machine, page 285–307, USA, 1988. Oxford University Press, Inc. ISBN 0198537417.

C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro, 23(4):14–19,
jul 2003. 10.1109/mm.2003.1225959.

S. Coombes. Neural fields. Scholarpedia, 1(6):1373, 2006. 10.4249/scholarpedia.1373. revi-
sion #138631.

J. Copeland, E. Dresner, D. Proudfoot, and O. Shagrir. Time to reinspect the foundations?
Communications of the ACM, 59(11):34–38, oct 2016. 10.1145/2908733.

J.-B. Cordonnier, A. Loukas, and M. Jaggi. On the relationship between self-attention and
convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in Telecommuni-
cations and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

M. Cucchi, C. Gruener, L. Petrauskas, P. Steiner, H. Tseng, A. Fischer, B. Penkovsky,
C. Matthus, P. Birkholz, H. Kleemann, and K. Leo. Reservoir computing with biocompati-

Deliverable D1.1 61 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

ble organic electrochemical networks for brain-inspired biosignal classification. Science Ad-
vances, 7(34):eabh0693, aug 2021. 10.1126/sciadv.abh0693.

A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of muscle synergies in the construction of a
natural motor behavior. Nature Neuroscience, 6(3):300–308, 2003.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neu-
romorphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, jan 2018.
10.1109/mm.2018.112130359.

R. Davis, H. E. Shrobe, and P. Szolovits. What is a knowledge representation? AI Magazine,
14(1):17–33, 1993. URL http://dblp.uni-trier.de/db/journals/aim/aim14.html#DavisSS93.

L. N. de Castro. Fundamentals of natural computing: an overview. Physics of Life Reviews, 4
(1):1–36, mar 2007. 10.1016/j.plrev.2006.10.002.

J. Degrave, M. Hermans, J. Dambre, and F. wyffels. A differentiable physics engine for deep
learning in robotics. Frontiers in Neurorobotics, 13, mar 2019. 10.3389/fnbot.2019.00006.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile robots. In
Proc. IEEE Int. Conf. on Robotics and Automation, 1999.

S. Deneve. Bayesian spiking neurons I: Inference. Neural Computation, 20(1):91–117, jan
2008. 10.1162/neco.2008.20.1.91.

A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. R, and S. Roy. Program
synthesis using natural language. In Proceedings of the 38th International Conference on
Software Engineering. ACM, may 2016. 10.1145/2884781.2884786.

D. Deutsch and C. Marletto. Constructor theory of information. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 471(2174):20140540, 2015.

J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. rahman Mohamed, and P. Kohli. Robust-
Fill: Neural program learning under noisy I/O. In D. Precup and Y. W. Teh, editors, Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 990–998. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/devlin17a.html.

E. W. Dijkstra. Complexity controlled by hierarchical ordering of function and variability. In
Software Engineering: Report on a conference sponsored by the NATO Science Committee,
pages 181–185, 1968.

E. W. Dijkstra. On the foolishness of "natural language programming". In Lecture Notes in
Computer Science, pages 51–53. Springer-Verlag, 1979. 10.1007/bfb0014656.

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar. All-optical reservoir com-
puting. Optics Express, 20(20):22783, sep 2012. 10.1364/oe.20.022783.

G. Dyson. Turing’s Cathedral: The Origins of the Digital Universe (Vintage). Vintage Books,
2012. ISBN 1400075998.

C. Edwards. Moore's law. Communications of the ACM, 64(2):12–14, jan 2021.
10.1145/3440992.

C. Eliasmith. A unified approach to building and controlling spiking attractor networks. Neural
Computation, 17:1276–1314, 2005.

Deliverable D1.1 62 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

C. Eliasmith. How to build a brain: A neural architecture for biological cognition. Oxford Univer-

sity Press, 2013.

C. Eliasmith, S. T. C., C. X., B. T., T. Y. DeWolf T., and D. Rasmussen. A large-scale model of
the functioning brain. Science, 338(6111):1202–1205, 2012a.

C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Rasmussen. A
large-scale model of the functioning brain. Science, 338(6111):1202–1205, 2012b.

J. Endrullis, J. W. Klop, and R. Bakhshi. Transducer degrees: atoms, infima and suprema. Acta
Informatica, 57(3-5):727–758, 2019.

D. Erhan, A. Courville, Y. Bengio, and P. Vincent. Why does unsupervised pre-training help
deep learning? In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 201–208, Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. PMLR. URL https://proceedings.mlr.press/v9/erhan10a.html.

B. Farhang-Boroujeny. Adaptive Filters: Theory and Applications. Wiley, 1998.

G. Fauconnier. Conceptual blending and analogy. The Analogical Mind: Perspectives from
Cognitive Science, pages 255–285, 01 2001.

J. Feldman. The neural binding problem(s). Cognitive Neurodynamics, 7, 02 2013.
10.1007/s11571-012-9219-8.

D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral
cortex. In Cereb cortex. Citeseer, 1991.

R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical journal, 1(6):445–466, 1961.

K. Forbus, J. Usher, A. Lovett, K. Lockwood, and J. Wetzel. Cogsketch: Sketch understanding
for cognitive science research and for education. Topics in Cognitive Science, 3(4):648–
666, 2011. https://doi.org/10.1111/j.1756-8765.2011.01149.x. URL https://onlinelibrary.wiley
.com/doi/abs/10.1111/j.1756-8765.2011.01149.x.

K. D. Forbus. Qualitative physics: past, present and future. In Exploring Artificial Intelligence:
Survey Talks from the National Conferences on Artificial Intelligence, pages 239–296. Mor-
gan Kaufmann, 1988.

S. Forrest. Emergent computation: self-organizing, collective, and cooperative phenomena in
natural and artificial computing networks. Physica D, 42:1–11, 1990.

W. J. Freeman, R. Kozma, and P. J. Werbos. Biocomplexity: adaptive behavior in complex
stochastic dynamical systems. Biosystems, 59(2):109–123, 2001.

R. French. The dynamics of the computational modeling of analogy-making. In P. A. Fishwick,
editor, Handbook of Dynamic System Modeling, chapter 2. Chapman & Hall, 2006.

K. Friston. A theory of cortical response. Phil. Trans. R. Soc. B, 360:815–836, 2005.

K. J. Friston, J. Daunizeau, J. Kilner, and S. J. Kiebel. Action and behavior: a free-energy
formulation. Biological Cybernetics, 102(3):227–260, 2010.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 02
1980. 10.1007/BF00344251.

Deliverable D1.1 63 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

J. Gama, v. Indrė, A. Bifet, M. Pechennizkiy, and A. Bouchachia. A survey on concept drift

adaptation. ACM Computing Surveys, 1(1):1–35, 2013.

J.-P. Georgé, M.-P. Gleizes, and P. Glize. Experiments in neo-computation based on emergent
programming. In Multiagent System Technologies, pages 237–239. Springer Berlin Heidel-
berg, 2005. 10.1007/11550648_24.

S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich, S. Nease,
and S. Ramakrishnan. A programmable and configurable mixed-mode FPAA SoC.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages 1–9, 2016.
10.1109/tvlsi.2015.2504119.

A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population coding of move-
ment direction. Science, 233(4771):1416–1419, 1986. 10.1126/science.3749885. URL
https://www.science.org/doi/abs/10.1126/science.3749885.

J. J. Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin, Boston, 1979.

M.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based on cooperative
self-organization for adaptive artificial systems. In Fourth European Congress of Systems
Science, pages 20–24, 1999.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www
.deeplearningbook.org.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic programming. In
Future of Software Engineering Proceedings. ACM, may 2014. 10.1145/2593882.2593900.

A. Goyal and Y. Bengio. Inductive biases for deep learning of higher-level cognition. CoRR,
abs/2011.15091, 2020. URL https://arxiv.org/abs/2011.15091.

A. Graves, G. Wayne, and I. Danihelka. Neural Turing machines. 2014. arXiv 1410.5401.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Col-
menarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols,
G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hass-
abis. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, Oct. 2016. ISSN 00280836. URL http://dx.doi.org/10.1038/nature20101.

S. Grossberg. Adaptive resonance theory. Scholarpedia, 8(5):1569, 2013.

G. Grünert. Unconventional programming: non-programmable systems. PhD thesis,
Friedrich-Schiller-Universität Jena, 2017. URL https://www.db-thueringen.de/receive/dbt
_mods_00031925.

S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and Trends in Program-
ming Languages, 4(1-2):1–119, 2017. 10.1561/2500000010.

Y. Guo, X. Zou, Y. Hu, Y. Yang, X. Wang, Y. He, R. Kong, Y. Guo, G. Li, W. Zhang, S. Wu,
and H. Li. A Marr’s three-level analytical framework for neuromorphic electronic systems.
Advanced Intelligent Systems, page 2100054, 2021.

G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard. Spiking optical flow for
event-based sensors using IBM’s TrueNorth neurosynaptic system. IEEE Trans. on Biomed-
ical Circuits and Systems, 12(4):860–870, 2018.

Deliverable D1.1 64 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

M. S. Hammoodi, F. Stahl, and A. Badii. Real-time feature selection technique with concept drift

detection using adaptive micro-clusters for data stream mining. Knowledge-Based Systems,
161:205–239, 2018.

S. Harnad. Symbol grounding problem. Scholarpedia, 2(7):2373, 2007. 10.4249/scholarpe-
dia.2373. revision #73220.

J. Hasler. Large-scale field-programmable analog arrays. Proceedings of the IEEE, 108(8):
1283–1302, aug 2020a. 10.1109/jproc.2019.2950173.

J. Hasler. Defining analog standard cell libraries for mixed-signal computing enabled through
educational directions. In 2020 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, oct 2020b. 10.1109/iscas45731.2020.9181124.

J. Hasler and E. Black. Physical computing: Unifying real number computation to enable energy
efficient computing. Journal of Low Power Electronics and Applications, 11(2):14, mar 2021.
10.3390/jlpea11020014.

J. Hasler and B. Marr. Finding a roadmap to achieve large neuromorphic hardware systems.
Frontiers in Neuroscience, 7, 2013. 10.3389/fnins.2013.00118.

X. He, T. Liu, F. Hadaeghi, and H. Jaeger. Reservoir transfer on analog neuromorphic hardware.
In Proc. 9th Int. IEEE/EMBS Conf. on Neural Engineering, pages 1234–1238, 2019.

J. L. Hennessy and D. A. Patterson. A new golden age for computer architecture. Communica-
tions of the ACM, 62(2):48–60, jan 2019. 10.1145/3282307.

G. E. Hinton. How to represent part-whole hierarchies in a neural network. CoRR,
abs/2102.12627, 2021. URL https://arxiv.org/abs/2102.12627.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its applica-
tion to conduction and excitation in nerve. The Journal of Physiology, 117(4):500, 1952.

D. R. Hofstadter. Fluid Concepts and Creative Analogies: Computer Models of the Fundamental
Mechanisms of Thought. Basic Books, Inc., New York, NY, USA, 1996. ISBN 0465024750.

N. Hogan and T. Flash. Moving gracefully: quantitative theories of motor coordination. Trends
in Neuroscience, 10(4):170–174, 1987.

S. Hooker. The hardware lottery. arXiv preprint arXiv:2009.06489, 2020.

J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
79:2554–8, 05 1982. 10.1073/pnas.79.8.2554.

C. Horsman, S. Stepney, R. C. Wagner, and V. Kendon. When does a physical system com-
pute? Proc. of the Royal Society A, 470:20140182., 2014.

C. Huang and A. Darwiche. Inference in belief networks: A procedural guide. Int. J. of Approxi-
mate Reasoning, 11(1):158, 1994.

G. Indiveri. Introducing ‘neuromorphic computing and engineering’. Neuromorphic Computing
and Engineering, 1(1):010401, jul 2021. 10.1088/2634-4386/ac0a5b.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Del-
bruck, S.-C. Liu, P. Dudek, P. Häflinger, S. Renaud, J. Schemmel, C. Cauwenberghs,
J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang,

Deliverable D1.1 65 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

and K. Boahen. Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5:article
73, 2011.

M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and W. Tebbutt. A dif-
ferentiable programming system to bridge machine learning and scientific computing, 2019.
arXiv 1907.07587.

E. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on Neural
Networks, 15(5):1063–1070, 2004. 10.1109/TNN.2004.832719.

E. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
MIT Press, Cambridge MA, 2007.

E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks, 14
(6):1569–1572, 2003.

E. M. Izhikevich. Polychronization: Computation with spikes. Neural Computation, 18(2):245–
282, feb 2006. 10.1162/089976606775093882.

H. Jaeger. Today’s dynamical systems are too simple. Commentary to Tim van Gelder’s "The
dynamical hypothesis in cognitive science". Behavioral and Brain Sciences, 21(5):643, 1998.

H. Jaeger. Observable operator models for discrete stochastic time series. Neural Computation,
12(6):1371–1398, jun 2000. 10.1162/089976600300015411.

H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report, 148(34):13, 2001.

H. Jaeger. Controlling recurrent neural networks by conceptors. Technical Report 31, Jacobs
University Bremen, 2014. arXiv:1403.3369.

H. Jaeger. Principles of statistical modeling. Lecture notes, Jacobs University Bremen, 2019.
https://www.ai.rug.nl/minds/uploads/LN_PSM.pdf.

H. Jaeger. Toward a generalized theory comprising digital, neuromorphic, and unconventional
computing. Neuromorphic Computing and Engineering, 2021. 10.1088/2634-4386/abf151.

H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy
in wireless communication. Science, 304:78–80, 2004.

H. Jaeger, D. Doorakkers, C. Lawrence, and G. Indiveri. Dimensions of “timescales” in neuro-
morphic computing systems (deliverable report for the European Union project MeM-Scales).
https://arxiv.org/abs/2102.10648, 2021.

A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, and J. Carreira. Perceiver: General
perception with iterative attention. CoRR, abs/2103.03206, 2021. URL https://arxiv.org/abs/
2103.03206.

E. T. Jaynes. Probability Theory: the Logic of Science. Cambridge University Press, 2003. First
partial online editions in the late 1990ies. First three chapters online at http://bayes.wustl.edu/
etj/prob/book.pdf.

I. S. Jones and K. P. Kording. Can single neurons solve MNIST? the computational power of
biological dendritic trees, 2020. arXiv 2009.01269.

P. Kanerva. Hyperdimensional computing: An introduction to computing in distributed represen-
tation with high-dimensional random vectors. Cognitive Computation, 1(2):139–159, 2009.

Deliverable D1.1 66 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

N. Kant. Recent advances in neural program synthesis, 2018. URL :http\protect\leavevmode@

ifvmode\kern+.2222em\relax//arxiv.org/pdf/1802.02353v1:PDF. arXiv 1802.02353.

A. Karmiloff-Smith. Beyond Modularity: A Developmental Perspective on Cognitive Science.
01 1995. ISBN 9780262276740. 10.7551/mitpress/1579.001.0001.

A. Karpathy. Software 2.0. 2017. URL https://karpathy.medium.com.

S. Kiebel, J. Daunizeau, and K. Friston. A hierarchy of time-scales and the brain. PLoS Com-
putational Biology, 4(11):e1000209, 2008.

L. B. Kish. Quantum computing with analog circuits: Hilbert space computing. In V. K. Varadan
and L. B. Kish, editors, Smart Structures and Materials 2003: Smart Electronics, MEMS,
BioMEMS, and Nanotechnology. SPIE, jul 2003. 10.1117/12.497438.

K. Kitajo, D. Nozaki, L. M. Ward, and Y. Yamamoto. Behavioral stochastic resonance within the
human brain. Physical Review Letters, 90(21):218103, 2003.

H. Kitano. Biological robustness. Nature Reviews Genetics, 5(11):826–837, nov 2004.
10.1038/nrg1471.

E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in the ventral
visual pathway of the macaque cerebral cortex. Journal of neurophysiology, 71:856–67, 04
1994. 10.1152/jn.1994.71.3.856.

K. Koepsell, X. Wang, V. Vaingankar, Y. Wei, Q. Wang, D. Rathbun, M. Usrey, J. Hirsch, and
F. Sommer. Retinal oscillations carry visual information to cortex. Frontiers in Systems
Neuroscience, 3:4, 2009. ISSN 1662-5137. 10.3389/neuro.06.004.2009. URL https://www
.frontiersin.org/article/10.3389/neuro.06.004.2009.

T. Kohonen and T. Honkela. Kohonen network. Scholarpedia, 2(1):1568, 2007. 10.4249/schol-
arpedia.1568. revision #127841.

I. Kotseruba, O. J. A. Gonzalez, and J. K. Tsotsos. A review of 40 years of cognitive architecture
research: Focus on perception, attention, learning and applications. CoRR, abs/1610.08602,
2016. URL http://dblp.uni-trier.de/db/journals/corr/corr1610.html#KotserubaGT16.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Asso-
ciates, Inc., 2012. URL http://papers.nips.cc/paper/4824-imagenet-classification-with-deep
-convolutional-neural-networks.pdf.

T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mansinghka. Picture: A probabilistic program-
ming language for scene perception. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

M. Kunda. Visual mental imagery: A view from artificial intelligence. Cortex, 105, 02 2018.
10.1016/j.cortex.2018.01.022.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, dec 2015. 10.1126/sci-
ence.aab3050.

G. Lakoff. Women, Fire and Dangerous Things: What Categories Reveal About the Mind.
University of Chicago Press, Chicago, 1987. ISBN 978-0-226-46803-7.

Deliverable D1.1 67 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

J. Larus. Spending moore's dividend. Communications of the ACM, 52(5):62–69, may 2009.

10.1145/1506409.1506425.

J. W. Lawson and D. H. Wolpert. Adaptive programming of unconventional nano-
architectures. Journal of Computational and Theoretical Nanoscience, 3(2):272–279, apr
2006. 10.1166/jctn.2006.3009.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, may 2015.
10.1038/nature14539.

D. B. Lenat. CYC - a large-scale investment in knowledge infrastructure. Communications of
the ACM, 38(11):33–38, nov 1995. 10.1145/219717.219745.

Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang. Review of memristor devices in neuromorphic
computing: materials sciences and device challenges. Journal of Physics D: Applied Physics,
51(50):503002, sep 2018. 10.1088/1361-6463/aade3f.

M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In Proceedings
of the 14th International Conference on Neural Information Processing Systems: Natural and
Synthetic, NIPS’01, page 1555–1561, Cambridge, MA, USA, 2001. MIT Press.

W. Lotter, G. Kreiman, and D. D. Cox. Deep predictive coding networks for video prediction and
unsupervised learning. CoRR, abs/1605.08104, 2016. URL http://arxiv.org/abs/1605.08104.

W. Maass. Noise as a resource for computation and learning in networks of spiking neurons.
Proceedings of the IEEE, 102(5):860–880, 2014.

W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation, 14(11):
2531–2560, 2002. http://www.cis.tugraz.at/igi/maass/psfiles/LSM-v106.pdf.

Z. Mainen and T. Sejnowski. Reliability of spike timing in neocortical neurons. Science, 268:
1503–1505, 07 1995. 10.1126/science.7770778.

D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier. Physics for neuromorphic computing.
Nature Reviews Physics, 2(9):499–510, 2020.

D. Marr. Vision. A Computational Investigation into the Human Representation and Processing
of Visual Information. Freeman, 1980.

M. Mastella and E. Chicca. A hardware-friendly neuromorphic spiking neural network for fre-
quency detection and fine texture decoding. In 2021 IEEE International Symposium on Cir-
cuits and Systems (ISCAS). IEEE, may 2021. 10.1109/iscas51556.2021.9401377.

J. L. McClelland, F. Hill, M. Rudolph, J. Baldridge, and H. Schütze. Extending machine language
models toward human-level language understanding. CoRR, abs/1912.05877, 2019. URL
http://arxiv.org/abs/1912.05877.

W. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics, 5:127–147, 1943.

C. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636,
1990.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. CoRR, abs/1310.4546, 2013. URL http://arxiv.org/
abs/1310.4546.

Deliverable D1.1 68 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

R. Milner. Elements of interaction. Communications of the ACM, 36(1):78–89, jan 1993.

10.1145/151233.151240.

R. Milner. Turing, computing and communication. In Interactive Computation, pages 1–8.
Springer Berlin Heidelberg, 2006. 10.1007/3-540-34874-3_1.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA, 1967. ISBN
0131655639.

M. Mitchell. Abstraction and analogy-making in artificial intelligence. CoRR, abs/2102.10717,
2021. URL https://arxiv.org/abs/2102.10717.

M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to perform computa-
tions: mechanisms and impediments. Physica D: Nonlinear Phenomena, 75(1-3):361–391,
aug 1994. 10.1016/0167-2789(94)90293-3.

J. H. Moor. Three myths of computer science. The British Journal for the Philosophy of Science,
29(3):213–222, sep 1978. 10.1093/bjps/29.3.213.

C. Moore. Recursion theory on the reals and continuous-time computation. Theoretical Com-
puter Science, 162(1):23–44, aug 1996. 10.1016/0304-3975(95)00248-0.

S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri. A scalable multicore architecture with hetero-
geneous memory structures for dynamic neuromorphic asynchronous processors (dynaps).
IEEE Transactions on Biomedical Circuits and Systems, 12(1):106–122, 2018.

C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophysical
journal, 35(1):193–213, 1981.

D. Mumford. Pattern theory: a unifying perspective. In A. Joseph, F. Mignot, F. Murat, B. Prum,
and R. Rentschler, editors, Proc. of First European Congress of Mathematics, Vol. I, Invited
Lectures Part 1, number 3 in Progress in Mathematics, pages 187–224. Birkhäuser, Basel,
1994.

D. Mumford. Pattern theory: The mathematics of perception. In Proc. ICM 2002, Vol. 1, pages
401–422, 2002. https://arxiv.org/abs/math/0212400.

K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, Univ. of California, Berkeley, 2002.

M. Musisi-Nkambwe, S. Afshari, H. Barnaby, M. Kozicki, and I. S. Esqueda. The viability of
analog-based accelerators for neuromorphic computing: a survey. Neuromorphic Computing
and Engineering, 1(1):012001, jul 2021. 10.1088/2634-4386/ac0242.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve
axon. Proceedings of the IRE, 50(10):2061–2070, 1962.

R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report
CRG-TR-93-1, Dpt. of Computer Science, University of Toronto, 1993.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith,
R. Manohar, and K. Boahen. Braindrop: A mixed-signal neuromorphic architecture with a
dynamical systems-based programming model. Proc of the IEEE, 107(1):144–164, 2019.

E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, and R. J. Douglas. Synthesizing
cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sci-
ences, 110(37):E3468–E3476, jul 2013. 10.1073/pnas.1212083110.

Deliverable D1.1 69 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

A. Newell. Unified theories of cognition. Harvard University Press, 1990.

A. Newell and H. A. Simon. Computer science as empirical inquiry: symbols and search.
Communications of the ACM, 19(3):113–126, 1976.

C. Niell and M. Stryker. Modulation of visual responses by behavioral state in mouse visual
cortex. Neuron, 65:472–9, 02 2010. 10.1016/j.neuron.2010.01.033.

W. Olin-Ammentorp, K. Beckmann, C. D. Schuman, J. S. Plank, and N. C. Cady. Stochasticity
and robustness in spiking neural networks. Neurocomputing, 419:23–36, 2021.

B. Olshausen, C. Anderson, and D. Van Essen. A neurobiological model of visual atten-
tion and invariant pattern recognition based on dynamic routing of information. Journal of
Neuroscience, 13(11):4700–4719, 1993. ISSN 0270-6474. 10.1523/JNEUROSCI.13-11-
04700.1993. URL https://www.jneurosci.org/content/13/11/4700.

B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs. Current Opinion in Neurobi-
ology, 14(4):481–487, 2004. 10.1016/j.conb.2004.07.007.

E. Ott. Chaos in dynamical systems. Cambridge university press, 2002.

T. Oya, T. Asai, and Y. Amemiya. Stochastic resonance in an ensemble of single-electron
neuromorphic devices and its application to competitive neural networks. Chaos, Solitons &
Fractals, 32(2):855–861, 2007.

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar.
Optoelectronic reservoir computing. Scientific Reports, 2(1), feb 2012. 10.1038/srep00287.

M. Parashar and S. Hariri. Autonomic computing: An overview. In International workshop on
unconventional programming paradigms, Lecture Notes in Computer Science, pages 257–
269. Springer Berlin Heidelberg, 2005. 10.1007/11527800_20.

D. L. Parnas. Software aspects of strategic defense systems. Communications of the ACM, 28
(12):1326–1335, dec 1985. 10.1145/214956.214961.

L. Pecevski, D.and Büsing and W. Maass. Probabilistic inference in general graphical mod-
els through sampling in stochastic networks of spiking neurons. PLoS Comp. Biol., 7(12):
e1002294, 2011.

C. Petri. Kommunikation mit Automaten. Dissertation thesis, University of Bonn, Institute of
Mathematics, 1962.

M. A. Petrovici, A. Schroeder, O. Breitwieser, A. Grübl, J. Schemmel, and K. Meier. Robust-
ness from structure: inference with hierarchical spiking networks on analog neuromorphic
hardware. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2209–
2216. IEEE, 2017.

G. Primiero. Information in the philosophy of computer science. In The Routledge Hand-
book of Philosophy of Information, pages 108–125. Routledge, 2016. ISBN 9780367370466.
https://doi.org/10.4324/9781315757544.

M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich. Transient cognitive dynamics,
metastability, and decision making. PLOS Computational Biology, 4(5):e1000072, 2008.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. CoRR, abs/2102.12092, 2021. URL https://arxiv.org/
abs/2102.12092.

Deliverable D1.1 70 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber, M. Holzleit-

ner, M. Pavlović, G. K. Sandve, et al. Hopfield networks is all you need. arXiv preprint
arXiv:2008.02217, 2020.

A. S. Rekhi, B. Zimmer, N. Nedovic, N. Liu, R. Venkatesan, M. Wang, B. Khailany, W. J. Dally,
and C. T. Gray. Analog/mixed-signal hardware error modeling for deep learning inference. In
Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

E. T. Rolls and G. Deco. The Noisy Brain - Stochastic Dynamics as a Principle of Brain Function.
Oxford University Press, jan 2010. 10.1093/acprof:oso/9780199587865.001.0001.

F. Rosenblatt. The Perceptron: a probabilistic model for information storage and organization
in the brain. Psychological Review, 65(6):386–408, 1958.

L. A. Rubel. The extended analog computer. Advances in Applied Mathematics, 14(1):39–50,
1993.

H.-C. Ruiz-Euler, U. Alegre-Ibarra, B. van de Ven, H. Broersma, P. A. Bobbert, and W. G.
van der Wiel. Dopant network processing units: Towards efficient neural-network emulators
with high-capacity nanoelectronic nodes, 2020. arXiv 2007.12371.

R. Sarpeshkar. Analog versus digital: Extrapolating from electronics to neurobiology. Neural
Computation, 10(7):1601–1638, oct 1998. 10.1162/089976698300017052.

G. Schöner. The dynamics of neural populations capture the laws of the mind. Topics in
Cognitive Science, pages 1–15, 2019.

G. Schöner, J. Spencer, and D. Group. Dynamic Thinking: A Primer on Dynamic Field Theory.
11 2015. ISBN 9780199300563. 10.1093/acprof:oso/9780199300563.001.0001.

T. J. Sejnowski. The Deep Learning Revolution. The MIT Press, 2018. ISBN 9780262038034.

N. Semenova, X. Porte, L. Andreoli, M. Jacquot, L. Larger, and D. Brunner. Fundamental
aspects of noise in analog-hardware neural networks. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 29(10):103128, 2019.

N. Semenova, L. Larger, and D. Brunner. The general aspects of noise in analogue hardware
deep neural networks. arXiv preprint arXiv:2103.07413, 2021.

C. E. Shannon. Mathematical theory of the differential analyzer. Journal of Mathematics and
Physics, 20(1-4):337–354, apr 1941. 10.1002/sapm1941201337.

S. M. Sherman and R. W. Guillery. Distinct functions for direct and transthalamic corticocortical
connections. Journal of Neurophysiology, 106(3):1068–1077, 2011. 10.1152/jn.00429.2011.
URL https://doi.org/10.1152/jn.00429.2011. PMID: 21676936.

P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings
35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press,
1994. 10.1109/sfcs.1994.365700.

H. Siegelmann and E. Sontag. On the computational power of neural nets. Journal of Computer
and System Sciences, 50(1):132–150, feb 1995. 10.1006/jcss.1995.1013.

H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks. Theoretical Com-
puter Science, 131(2):331–360, sep 1994. ISSN 0304-3975. 10.1016/0304-3975(94)90178-
3.

Deliverable D1.1 71 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-

maran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, dec 2018. 10.1126/science.aar6404.

H. A. Simon. The architecture of complexity. In Facets of Systems Science, pages 457–476.
Springer US, 1991. 10.1007/978-1-4899-0718-9_31.

H. A. Simon and J. Laird. Sciences of the Artificial. The MIT Press, Aug. 2019. ISBN
0262537532. URL https://www.ebook.de/de/product/36034287/herbert_a_simon_john_e
_laird_sciences_of_the_artificial.html.

C. A. Skarda and W. J. Freeman. How brains make chaos in order to make sense of the world.
Behavioral and brain sciences, 10(2):161–173, 1987.

A. Sloman. The irrelevance of Turing machines to artificial intelligence. In M. Scheutz, editor,
Computationalism: New Directions. MIT Press, 2002.

A. Sloman. Architectural and representational requirements for seeing processes, proto-
affordances and affordances. In Logic and Probability for Scene Interpretation, 2008.

L. Smith and E. Thelen, editors. A Dynamic Systems Approach to Development: Applications.
Bradford/MIT Press, Cambridge, Mass., 1993.

J. Spolsky. The law of leaky abstractions. In Joel on Software, pages 197–202. Apress, 2004.
10.1007/978-1-4302-0753-5_26.

L. Steels and R. Brooks, editors. Building Agents out of Autonomous Behavior Systems.
Lawrence Erlbaum, 1993.

S. Stepney. Unconventional computer programming. In AISB/IACAP World Congress 2012 on
Natural Computing / Unconventional Computing and its Philosophical Significance, page 12,
2012.

S. Stepney and S. Hickinbotham. UCOMP roadmap: Survey, challenges, recommendations. In
S. Stepney, S. Rasmussen, and M. Amos, editors, Computational Matter, chapter 2, pages
9–32. Springer Verlag, 2018.

E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu. Robustness of
spiking deep belief networks to noise and reduced bit precision of neuro-inspired hardware
platforms. Frontiers in neuroscience, 9:222, 2015.

S.-H. Sun, H. Noh, S. Somasundaram, and J. Lim. Neural program synthesis from diverse
demonstration videos. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4790–4799. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/sun18a
.html.

I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted Boltzmann
machine. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21 (NIPS 08), pages 1601–1608, 2009.

T. Tanaka, G. abnd Yamane, J. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata,
D. Nakano, and A. Hirose. Recent advances in physical reservoir computing: A review.
Neural Networks, 115:100–123, 2019. preprint in https://arxiv.org/abs/1808.04962.

Deliverable D1.1 72 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

J. Tenenbaum, T. L. Griffiths, and C. Kemp. Theory-based Bayesian models of inductive learn-

ing and reasoning. Trends in Cognitive Science, 10(7):309–318, 2006.

D. Tervo, J. Tenenbaum, and S. Gershman. Toward the neural implementation
of structure learning. Current Opinion in Neurobiology, 37:99–105, 04 2016.
10.1016/j.conb.2016.01.014.

K. A. Thoroughman and R. Shadmehr. Learning of action through adaptive combination of
motor primitives. Nature, 407(Oct. 12):742–747, 2000.

S. Thorpe, A. Delorme, and R. V. Rullen. Spike-based strategies for rapid processing. Neural
Networks, 14(6-7):715–725, jul 2001. 10.1016/s0893-6080(01)00083-1.

J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros,
K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, and J. Grollier. Neuromor-
phic computing with nanoscale spintronic oscillators. Nature, 547(7664):428–431, jul 2017.
10.1038/nature23011.

M. Treinish, J. Gambetta, P. Nation, P. Kassebaum, Qiskit-Bot, D. M. Rodríguez, S. De La
Puente González, Shaohan Hu, K. Krsulich, L. Zdanski, J. Yu, J. Gacon, D. McKay, J. Gomez,
L. Capelluto, Travis-S-IBM, A. Panigrahi, Lerongil, Rafey Iqbal Rahman, S. Wood, L. Bello,
Divyanshu Singh, , Drew, J. Schwarm, MELVIN GEORGE, M. Marques, O. C. Hamido, Ro-
hitMidha23, S. Dague, and S. Garion. Qiskit: An open-source framework for quantum com-
puting, 2021.

A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc.
Lond. Math. Soc., 42(2):230–265, 1936.

A. M. Turing. Computing machinery and intelligence. Mind, LIX(236):433–460, Oct. 1950.
10.1093/mind/lix.236.433.

L. Valiant. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering
in a Complex World. BASIC BOOKS, June 2013. ISBN 0465032710.

L. G. Valiant. Robust logics. Artificial Intelligence, 117(2):231–253, mar 2000. 10.1016/s0004-
3702(00)00002-3.

L. G. Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565–1594, jan
2008. 10.1137/070682575.

T. van Gelder and R. Port, editors. Mind as Motion: Explorations in the Dynamics of Cognition.
Bradford/MIT Press, 1995.

J. van Leeuwen and J. Wiedermann. Beyond the turing limit: Evolving interactive systems. In
International Conference on Current Trends in Theory and Practice of Computer Science,
number 2234 in LNCS, pages 90–109. Springer, 2001.

D. van Noort, F.-U. Gast, and J. S. McCaskill. DNA computing in microreactors. In N. Jonoska
and N. C. Seeman, editors, DNA7, volume 2340 of LNCS, pages 33–45. Springer Verlag,
2002.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

L. von Bertalanffy. General System Theory. Braziller, N.Y., 1968.

Deliverable D1.1 73 of 73

GA 860360-POST-DIGITAL Deliverable D1.1

J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable

components. Automata Studies, 34:43–98, 1956.

M. M. Waldrop. The chips are down for Moore’s law. Nature, 530(7589):144–147, feb 2016.
10.1038/530144a.

J. X. Wang, Z. Kurth-Nelson, D. Kumaran, D. Tirumala, H. Soyer, J. Z. Leibo, D. Hassabis,
and M. M. Botvinick. Prefrontal cortex as a meta-reinforcement learning system. Nature
Neuroscience, 21:860–868, 2018.

W. Weaver. Science and complexity. American Scientist, 36(4):536–544, 1948. ISSN
00030996. URL http://www.jstor.org/stable/27826254.

P. Wegner. Why interaction is more powerful than algorithms. Communications of the ACM, 40
(5):80–91, may 1997. 10.1145/253769.253801.

P. Wegner and D. Goldin. Computation beyond turing machines. Communications of the ACM,
46(4):100–102, apr 2003. 10.1145/641205.641235.

J. Weis, P. Spilger, S. Billaudelle, Y. Stradmann, A. Emmel, E. Müller, O. Breitwieser, A. Grübl,
J. Ilmberger, V. Karasenko, et al. Inference with artificial neural networks on analog neuro-
morphic hardware. In IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge,
and Mobile for Embedded Machine Learning, pages 201–212. Springer, 2020.

N. Wiener. Cybernetics, or control and communication in the animal and the machine. MIT
Press, 1948.

S. Wolfram. A Project to Find the Fundamental Theory of Physics. Wolfram Media, Inc., 2020.
Core contents online at https://www.wolframphysics.org/technical-introduction/.

D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997. 10.1109/4235.585893.

R. Woods and G. Lightbody. Robustness in digital hardware. In Robust Intelligent Systems,
pages 3–21. Springer London, 2008. 10.1007/978-1-84800-261-6_1.

G. Wunsch. Geschichte der Systemtheorie (in German). Oldenbourg Verlag München, 1985.

Z. Ying, C. Feng, Z. Zhao, S. Dhar, H. Dalir, J. Gu, Y. Cheng, R. Soref, D. Z. Pan, and R. T. Chen.
Electronic-photonic arithmetic logic unit for high-speed computing. Nature Communications,
11(1), may 2020. 10.1038/s41467-020-16057-3.

L. A. Zadeh. Fuzzy logic, neural networks, and soft computing. Communications of the ACM,
37(3):77–84, mar 1994. 10.1145/175247.175255.

Y. Zhang, P. Qu, Y. Ji, W. Zhang, G. Gao, G. Wang, S. Song, G. Li, W. Chen, W. Zheng, F. Chen,
J. Pei, R. Zhao, M. Zhao, and L. Shi. A system hierarchy for brain-inspired computing. Nature,
586(15 Oct):378–384, 2020.

C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough. Noisy machines: Understanding noisy
neural networks and enhancing robustness to analog hardware errors using distillation. arXiv
preprint arXiv:2001.04974, 2020.

